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Motion planning

Find

u : [0, tf ]→ U ⊂ Rm

x : [0, tf ]→ X ⊂ Rn

satisfying

ẋ(t) = f (t, x(t), u(t))

x(0) = xstart

x(tf ) = xgoal

for free final time tf
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Motion planning under bounded uncertainty

Find

u : [0, tf ]→ U ⊂ Rm

x : [0, tf ]→ X ⊂ Rn

satisfying

ẋ(t) = f (t, x(t), u(t), ε)

x(0) = xstart

x(tf ) = xgoal

for free final time tf , despite bounded uncertainty

ε ∈ [1− δ, 1 + δ]
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Motion planning as ensemble control

Find

u : [0, tf ]→ U ⊂ Rm

x : [0, tf ]× [1− δ, 1 + δ]→ X ⊂ Rn

satisfying

ẋ(t, ε) = f (t, x(t, ε), u(t), ε)

x(0, ε) = xstart

x(tf , ε) = xgoal

for free final time tf and for all

ε ∈ [1− δ, 1 + δ]
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Take-away message

Ensemble control theory is a useful way to deal with bounded
uncertainty in dynamical systems.

To steer one system with an uncertain parameter, we pretend to
steer a continuous ensemble of systems, each with a particular
value of that parameter.

In the examples we will consider, this approach costs us nothing in
terms of computational complexity.
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A driven harmonic oscillator

• This system is linear and has the form

ẋ =

[
0 1
−ε 0

]
x +

[
0
ε

]
u

= Ax + Bu,

where (x1, x2) = (y , ẏ), u = d , and ε = k/m.

• For known ε, this system is controllable because

[
AB B

]
=

[
ε 0
0 ε

]
is full rank.

m

k

d

y
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Ensemble controllability

• For unknown ε, consider the lifted system

ẋ(t, ε) =

[
0 1
−ε 0

]
x(t, ε) +

[
0
ε

]
u(t)

= A(ε)x(t, ε) + B(ε)u(t).

• For any integer k ≥ 0, we have[
A2k+1B A2kB

]
=

[
εk+1 0

0 εk+1

]
.

• So, we can approximate any desired movement direction by a
polynomial in ε, with error vanishing in k :

f (ε) ≈
k−1∑
i=0

εi
(
ai

[
1
0

]
+ bi

[
0
1

])
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Control by piecewise-constant inputs (1/2)

• A discrete-time model is

xd(i + 1, ε) = eA(ε)T xd(i , ε) +

(∫ T

0
eAsBds

)
ud(i)

= Ad(ε)xd(i , ε) + Bd(ε)ud(i)

• If xd(0, ε) = 0 then

xd(2k , ε) =
2k∑
i=0

Ai
d(ε)Bd(ε)ud(2k − i)

• This can be approximated by the series expansion

xd(2k , ε) ≈
k−1∑
i=0

1

i !

(
∂ ixd(2k , ε)

∂εi

∣∣∣∣
ε=1

)
(ε− 1)i
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Control by piecewise-constant inputs (2/2)

• The result has the form

xd(2k , ε) =
k∑

i=1

[
ri
si

]
(ε− 1)i−1 + O

(
|ε− 1|k

)
where r , s ∈ Rk are linear in ud ∈ R2k

• To achieve (x1, x2) with error of order k in |ε− 1|:

r =


x1
0
...
0

 , s =


x2
0
...
0


• The solution (2k linear equations in 2k variables) has the form

ud = K1x1 + K2x2

for matrices K1 and K2 that can be precomputed
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Example results in simulation
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A differential drive robot with uncertain wheel radius

ε = 0.8 ε = 0.83 ε = 1.0 ε = 1.2

For a fixed wheel separation,
inputs scale with wheel radius

εr = wheel radius

b = wheel separation

v = ε

(
r(ωR + ωL)

2

)
= εu1

w = ε

(
r(ωR − ωL)

b

)
= εu2
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Scratch-drive microrobots with uncertain forward speed

Figure: Donald et al. (2008)

Figure: Donald et al. (2006)

• For a fixed turning
radius, inputs scale
with forward speed
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Analysis of one robot

• This system is nonlinear and has the form

ẋ = ε

cos x3
sin x3

0

 u1 + ε

0
0
1

 u2

= εg1(x)u1 + εg2(x)u2

• For known ε > 0, this system is controllable because

[
[εg1, εg2] εg2 εg1

]
=

 ε2 sin x3 0 ε cos x3
−ε2 cos x3 0 ε sin x3

0 ε 0


is full rank everywhere
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Analysis of an ensemble (1/3)

• For unknown ε, consider the lifted system

ẋ(t, ε) = ε

cos x3(t, ε)
sin x3(t, ε)

0

 u1(t) + ε

0
0
1

 u2(t)

= εg1(x(t, ε))u1(t) + εg2(x(t, ε))u2(t)

• Heading is not controllable, since for all ε

x3(t, ε) = x3(0, ε) + εθ(t) where θ̇(t) = u2(t)

• Eliminate heading to get a controllable subsystem:ẋ1(t, ε)
ẋ2(t, ε)

θ̇(t)

 = ε

cos (x3(0, ε) + εθ(t))
sin (x3(0, ε) + εθ(t))

0

 u1(t) +

0
0
1

 u2(t)
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Analysis of an ensemble (2/3)

• Take Lie brackets to find new control vector fields:

[εg1, g2] = ε

(
∂g2
∂q

g1 −
∂g1
∂q

g2

)

= −ε2
− sin (x3(0, ε) + εθ(t))

cos (x3(0, ε) + εθ(t))
0


= −ε2g3

[[εg1, g2] , g2] = −ε3g1
[[[εg1, g2] , g2] , g2] = −ε4g3

...
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Analysis of an ensemble (3/3)

• We can approximate any desired movement direction by a
polynomial in ε, with error vanishing in k:

f (ε) ≈ cg2 +
k∑

i=0

(
aiε

2i+1g1 + biε
2i+2g3

)
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Control with piecewise-constant inputs

u1 u2 ∆t

0 1/λ λ(j − 1)φ

sign
(
a′j

)
0

∣∣∣a′j ∣∣∣
0 −1/λ 2λ(j − 1)φ

sign
(
b′j

)
0

∣∣∣b′j ∣∣∣
0 1/λ λ(j − 1)φ
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Control with piecewise-constant inputs

(j − 1)φ

u1 u2 ∆t

0 1/λ λ(j − 1)φ

sign
(
a′j

)
0

∣∣∣a′j ∣∣∣
0 −1/λ 2λ(j − 1)φ

sign
(
b′j

)
0

∣∣∣b′j ∣∣∣
0 1/λ λ(j − 1)φ
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Control with piecewise-constant inputs

a′j

u1 u2 ∆t

0 1/λ λ(j − 1)φ

sign
(
a′j

)
0

∣∣∣a′j ∣∣∣

0 −1/λ 2λ(j − 1)φ

sign
(
b′j

)
0

∣∣∣b′j ∣∣∣
0 1/λ λ(j − 1)φ
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Control with piecewise-constant inputs

−2(j − 1)φ u1 u2 ∆t

0 1/λ λ(j − 1)φ

sign
(
a′j

)
0

∣∣∣a′j ∣∣∣
0 −1/λ 2λ(j − 1)φ

sign
(
b′j

)
0

∣∣∣b′j ∣∣∣
0 1/λ λ(j − 1)φ
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Control with piecewise-constant inputs

b′j

u1 u2 ∆t

0 1/λ λ(j − 1)φ

sign
(
a′j

)
0

∣∣∣a′j ∣∣∣
0 −1/λ 2λ(j − 1)φ

sign
(
b′j

)
0

∣∣∣b′j ∣∣∣

0 1/λ λ(j − 1)φ

tbretl@illinois.edu Ensemble control for robot motion planning 20/ 32



Introduction Linear example Nonlinear example Conclusion Model Analysis Results

Control with piecewise-constant inputs

(j − 1)φ

u1 u2 ∆t

0 1/λ λ(j − 1)φ

sign
(
a′j

)
0

∣∣∣a′j ∣∣∣
0 −1/λ 2λ(j − 1)φ

sign
(
b′j

)
0

∣∣∣b′j ∣∣∣
0 1/λ λ(j − 1)φ
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Correspondence with polynomial approximation

• The result is to achieve

∆x1(ε) = (a′j + b′j)ε cos (ε(j − 1)φ)

∆x2(ε) = (a′j − b′j)ε sin (ε(j − 1)φ)

∆θ = 0

• With the input transformation

a′j =
aj + bj−1

2

b′j =
aj − bj−1

2

for freely chosen ak , bk ∈ R, we can write

∆x1(ε) = ajε cos (ε(j − 1)φ)

∆x2(ε) = bj−1ε sin (ε(j − 1)φ) .
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Sequence of motion primitives (1/3)

• For ak+1 = 0, the result after k + 1 primitives is

∆x1(ε) =
k∑

j=1

ajε cos (ε(j − 1)φ)

∆x2(ε) =
k∑

j=1

bjε sin (εjφ)

• This can be approximated by the series expansions

∆x1(ε) ≈
k−1∑
i=0

1

i !

(
∂ i∆x1
∂εi

∣∣∣∣
ε=1

)
(ε− 1)i

∆x2(ε) ≈
k−1∑
i=0

1

i !

(
∂ i∆x2
∂εi

∣∣∣∣
ε=1

)
(ε− 1)i
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Sequence of motion primitives (2/3)

• The result has the form

∆x1(ε) =
k∑

i=1

ri (ε− 1)i−1 + O
(
|ε− 1|k

)
∆x2(ε) =

k∑
i=1

si (ε− 1)i−1 + O
(
|ε− 1|k

)
where r , s ∈ Rk are linear in a, b ∈ Rk

• To achieve ∆x1 = ∆x2 = 1 with error of order k in |ε− 1|:

r = s =


1
0
...
0


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Sequence of motion primitives (3/3)

• Require exactly k + 1 primitives to achieve kth-order error

• Precompute a, b as 2k linear equations in 2k variables

• For φ = π/2, this can be done in closed form

• By linearity, a∆x1 and b∆x2 reach arbitrary ∆x1 and ∆x2

• “Planning” means computing piecewise-constant inputs

a′ =
1

2

([
a
0

]
∆x1 +

[
0
b

]
∆x2

)
b′ =

1

2

([
a
0

]
∆x1 −

[
0
b

]
∆x2

)
.

• This approach does not require sampling ε
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Example results in simulation
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Scaled primitives get you everywhere “for free”
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Example results in experiment
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Connections

• NMR spectroscopy and imaging (Brockett, Khaneja, Li,
Altafini, Beauchard, Coron, Pereira da Silva, Rouchon, etc.)

• Robust control (Dullerud and Paganini, Singer and Seering,
Fischer and Psiaki, etc.)

• Sensorless manipulation (Erdmann, Mason, Goldberg, Lynch,
Murphey, Akella, van der Stappen, Moll, etc.)

• POMDP planning (Hsu, Hutchinson, Roy, Thrun, etc.)

• Optimal control of micro/nano-robot teams (under review)

• Control-theoretic approach to manipulation of deformable
objects (in preparation)

• BMIs based on inverse optimal control
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Questions?
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Connection to NMR spectroscopy and imaging

• Need to manipulate an ensemble of ≈ 1023 nuclear spins, each
governed by the Schrödinger equation

• Control input changes the potential energy in the system
Hamiltonian (e.g., by applying electromagnetic pulses)

• One model is

dx(t, s)

dt
=

(
A(s) +

∑
i

uiBi (s)

)
x(t, s)

• “s” describes variation in A and Bi from Larmor dispersion (in
natural frequencies), rf inhomogeneity (in strength of the
applied radio frequency), and relaxation rates

• Is it possible to steer from one state to another?
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