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Find
u: [0,t] = U CR™
x:[0,t] = X CR”
satisfying
x(t) = £ (¢, x(¢), u(t))

X(O) = Xstart

X(tf) = Xgoal

for free final time tf
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Motion planning under bounded uncertainty

Find

u: [0,t7] = U CR™
x:[0,tf] > X CR"

satisfying

x(t) = f(t,x(t), u(t),e)
X(O) = Xstart

X(tf) = Xgoal
for free final time tf, despite bounded uncertainty

ec€[l—06,1+0]
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Motion planning as ensemble control

Find

u: [0,trf] = U C R™
x:[0,t,] x[1—0,146] = X CR"

satisfying

x(t,€) = f (t,x(t,€),u(t),e)
X(an) = Xstart

X(tf,é) = Xgoal
for free final time t¢ and for all

ec€[l1—06,1+0]

tbretl@illinois.edu Ensemble control for robot motion planning 5/ 32



Introduction Linear example Nonlinear example Conclusion Problem Message

Take-away message

Ensemble control theory is a useful way to deal with bounded
uncertainty in dynamical systems.

To steer one system with an uncertain parameter, we pretend to
steer a continuous ensemble of systems, each with a particular

value of that parameter.

In the examples we will consider, this approach costs us nothing in
terms of computational complexity.

tbretl@illinois.edu Ensemble control for robot motion planning 6/ 32



@ Introduction

© Linear example
@ Model
@ Analysis
@ Results

© Nonlinear example

@ Conclusion



Introduction Linear example Nonlinear example Conclusion Model Analysis Results

A driven harmonic oscillator

e This system is linear and has the form

[0 1, .o m
T l—e 0 el Yy ot
= Ax + Bu, k

where (x1,x) = (y,y), u=d, and e = k/m. d I

e For known ¢, this system is controllable because

[AB B] = [8 S]

is full rank.
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Ensemble controllability

e For unknown ¢, consider the lifted system

i(t, &) = [_06 (1)} x(t,€) + H u(t)
= A(e)x(t,€) + B(e)u(t).
e For any integer kK > 0, we have

[A2k1E A2KB] = [6k+1 0 ]
0 ek+1

e So, we can approximate any desired movement direction by a
polynomial in €, with error vanishing in k:

0= 5 (o [ -4 [])
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Control by piecewise-constant inputs (1/2)

e A discrete-time model is

-
xg(i +1,€) = AT xy(i, €) + </0 eAsBds> ug(r)
= Ad(€)xa(i, €) + Ba(€)ua(i)
e If x4(0,€) = 0 then

2k

xd(2k, €) = > Al(€)Ba(€)ua(2k — i)
i=0

e This can be approximated by the series expansion

6:1) (e~ 1)

tbretl@illinois.edu Ensemble control for robot motion planning 10/ 32

k—1 i
1 [0'xq(2k, €
xd(2k,€) = g q (dfge')

i=0




Introduction Linear example Nonlinear example Conclusion Model Analysis Results

Control by piecewise-constant inputs (2/2)

e The result has the form

k . .
x4(2k, €) = Z [g] (e—1)"1+0 (|€ — 1‘k)

i=1 &'
k : ; 2k
where r;s € R* are linear in ug € R
e To achieve (x1,x2) with error of order k in |e — 1]

X1 X2

0 0
r = s S =

0 0

e The solution (2k linear equations in 2k variables) has the form
ug = Kixy + Koxo

for matrices K1 and K5 that can be precomputed
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A differential drive robot with uncertain wheel radius

Model Analysis Results

€e=0.8 €=0.83

e=1.0

e=12

tbretl@illinois.edu

For a fixed wheel separation,
inputs scale with wheel radius

er = wheel radius

b = wheel separation

(r(wR -I-(.L)L))
vEe|lm—p ) Seu

W:<%):
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Scratch-drive microrobots with uncertain forward speed
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Analysis of one robot

e This system is nonlinear and has the form

COS X3 0
Xx=¢|sinxg| ug+e€|0| u
0 1

= eg1(x)u1 + ega(x)u2

e For known € > 0, this system is controllable because

e?sinxg 0 €ecosx3

[[Gglaﬁgz] €82 6g1]: —e?cosxz 0 esinxs

0 € 0

is full rank everywhere
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Analysis of an ensemble (1/3)

e For unknown ¢, consider the lifted system

cos x3(t, €) 0
x(t,€) =€ |sinxs(t,€) | ur(t) +€e [0] wa(t)
0 1

= eg1(x(t,€))ur(t) + ega(x(t,€))ua(t)
e Heading is not controllable, since for all €
x3(t,€) = x3(0, €) + €0(t) where 0(t) = ux(t)

e Eliminate heading to get a controllable subsystem:

x1(t, €) cos (x3(0, €) + €d(t)) 0
X(t €) | = e |sin(x3(0,€) +€d(t)) | ur(t) + |0 wa(t)
0(t) 0 1
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Analysis of an ensemble (2/3)

e Take Lie brackets to find new control vector fields:

[eg1, 2] = € %gl - % 82
dq dq

—sin (x3(0,€) + €6(t))
= —€% | cos(x3(0,€) + €6(t))
0
= —€2g3
leg1, &2] . g2] = —€ &

[[legr, 2], 2] , &2] = —€¢*gs
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Analysis of an ensemble (3/3)

e We can approximate any desired movement direction by a
polynomial in €, with error vanishing in k:

k

f(e) ~ cgr + Z (3;62i+1g1 + b;e2i+2g3)
i=0

tbretl@illinois.edu Ensemble control for robot motion planning 19/ 32



u1 uo At




u1 uo At

0 /A AG-1)¢

@Ej—l)qb




i up At
0 /X Aj—1)¢
/
g sign ( &' 0 a’-‘




Model Analysis Results
Contr

—2(j —1)¢ u1 uo At
0 1/ AG—-1)¢

sign (aj’-) 0 a
0 —1/A 2A(j —1)¢



Introduction Linear example Nonlinear example Conclusion Model Analysis Results

Control with piecewise-constant inputs

u uo At
0 1/ A(J—-1)¢
sign (a}) 0 ‘aj—
0 —1/X 2X( — 1)¢
bj sign <bj’.> 0 )bj’-‘
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Control with piecewise-constant inputs

u uo At

0 1/ A(J—-1)¢
sign (a}) 0 ‘aj—

0 —1/X 2X( — 1)¢
sign <bj’.> 0 )bj’-‘

0 1A Aj—1)¢

ST
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Correspondence with polynomial approximation

e The result is to achieve
Axi(€) = (a + bj)ecos (e(j — 1)¢)
Axy(€) = (aj — b})esin (e(j — 1)¢)
A=0
e With the input transformation
i+ b
S = +Dj-1

2
/_aj_bj—l

for freely chosen ay, by € R, we can write

Axq(e) = ajecos (e(j — 1)9)
AX2(6) = Dj_1€ sin (6(] - 1)¢) .
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Sequence of motion primitives (1/3)

e For ay41 =0, the result after k + 1 primitives is

Axi(e Z ajecos (e(j — 1))

Axy(e Zb esin (ejo)

e This can be approxmated by the series expansions

k—1 ;
1 (9 Ax ,
Aa() =Y ( A > (e—1)
i=0 e=1
k—1 ;
1 (9 Dx ,
Axz(€) =~ F < 5ei > (e—1)
i=0 e=1
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Sequence of motion primitives (2/3)

e The result has the form

k

Axi (e Zr, (e —1) (]6—1|k)
i=1
k

Axp(e Zs, (e —1) (]e—1|k)
i=1

where r,s € R¥ are linear in a, b € R¥

e To achieve Ax; = Axp = 1 with error of order k in e — 1]:
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Sequence of motion primitives (3/3)

e Require exactly k 4+ 1 primitives to achieve kth-order error
e Precompute a, b as 2k linear equations in 2k variables

e For ¢ = /2, this can be done in closed form

e By linearity, alAx; and bAxy reach arbitrary Ax; and Ax,

e “Planning” means computing piecewise-constant inputs

-3 (g
o3 -g)

e This approach does not require sampling ¢
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Example results in simulation
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Scaled primitives get you everywhere “for free”

Model Analysis Results

F

-

3
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Example results in experiment
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Connections

e NMR spectroscopy and imaging (Brockett, Khaneja, Li,
Altafini, Beauchard, Coron, Pereira da Silva, Rouchon, etc.)

e Robust control (Dullerud and Paganini, Singer and Seering,
Fischer and Psiaki, etc.)

e Sensorless manipulation (Erdmann, Mason, Goldberg, Lynch,
Murphey, Akella, van der Stappen, Moll, etc.)

e POMDP planning (Hsu, Hutchinson, Roy, Thrun, etc.)

e Optimal control of micro/nano-robot teams (under review)

e Control-theoretic approach to manipulation of deformable
objects (in preparation)

e BMIs based on inverse optimal control
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Questions?

B eoh2.avi

o LD
00:00:00 &
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Connection to NMR spectroscopy and imaging

e Need to manipulate an ensemble of ~ 10?3 nuclear spins, each
governed by the Schrodinger equation

e Control input changes the potential energy in the system
Hamiltonian (e.g., by applying electromagnetic pulses)

e One model is

dx(t,s)
dt_< +Zu, ) (t,s)

e “s” describes variation in A and B; from Larmor dispersion (in
natural frequencies), rf inhomogeneity (in strength of the
applied radio frequency), and relaxation rates

e Is it possible to steer from one state to another?
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