2011 IEEE International Conference on Robotics and Automation

> May 9-13, 2011 Shanghai International Convention Center Shanghai, China

Uncertainty: the barrier to automate medicine

T. Haidegger^{1,2}, B. Benyó¹, Z. Benyó¹

¹ Budapest University of Technology and Economics (BME – IIT), Laboratory of Biomedical Engineering, Budapest, Hungary

² Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria

You name it!

ICRA2011 workshop on Uncertainty in Automation

- CIS: Computer-Integrated Surgery
- CIIM: Computer-Integrated Interventional Medicine
- CAS: Computer-Assisted Surgery

Computer-Aided Surgery

- IGS(T): Image-Guided Surgery (Therapy)
- MIS: Minimally Invasive Surgery
- Surgical CAD/CAM
 - CASD Computer Aided Surgical Design

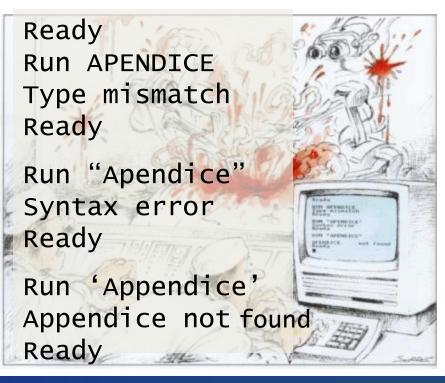
Motivation

• CASM Computer Aided Surgical Manufacturing

X

• Surgical Total Quality Management

ğ

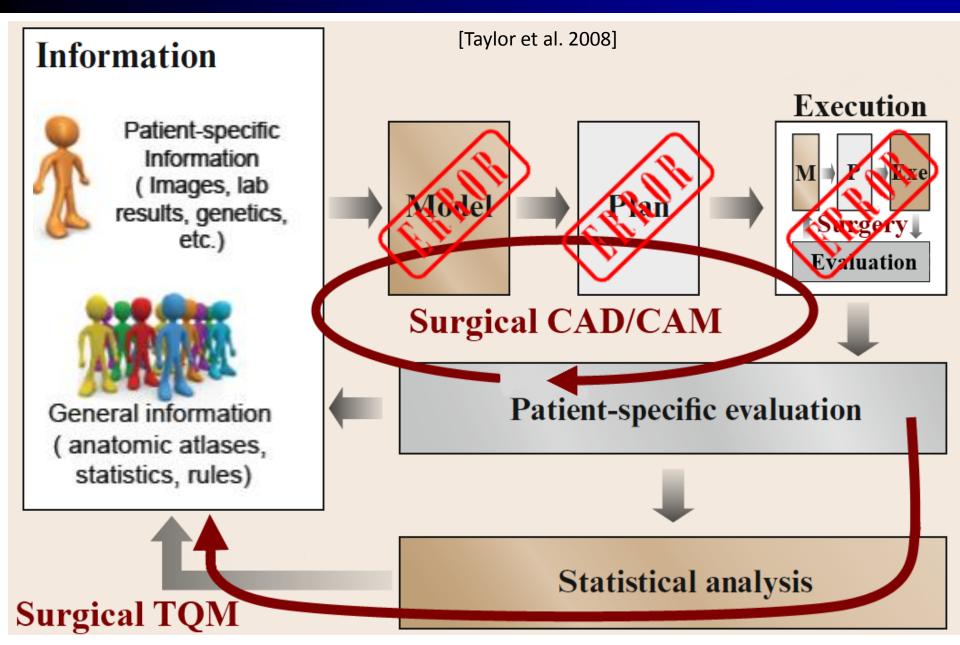


Errors mean risk and danger

- No routine operation
- Inherent danger originating form HW&SW
 - Robot structure
 - End effectors
 - Sterility
 - Software bug
 - Interference of devices
 - etc.

Introduction X Motivation X Metrics in use X Propagation of errors Stochastic approach to CIS X Case study X Conclusion

Sources of errors


ICRA2011 workshop on Uncertainty in Automation

- Imaging errors
- Volume model generation errors
- Treatment planning errors
- Registration errors
- Errors introduced by hardware fixturing
- Intra-operative data noise
- Inherent inaccuracies of surgical tools and actions
- System components' integration
- Patient motion
- Physiological tissue motion

Concept of CIS

ICRA2011 workshop on Uncertainty in Automation

Facing the challenges in CIS

Different approaches

Investigating methods to improve the accuracy of treatment delivery

- Human-in-the-loop control
 - Leave the mapping to the surgeon

- Registration (image) based
 - Human oversight

Introduction X Motivation X Metrics in use X Propagation of errors Stochastic approach to CIS X Case study X Conclusion

Accuracy metrics

Originating from the industry

Inherent accuracy of system components

Accuracy vs. repeatability

Use of phantoms (artifacts) for testing

From medical imaging (point-based registration)

FRE, FLE, TRE and similars

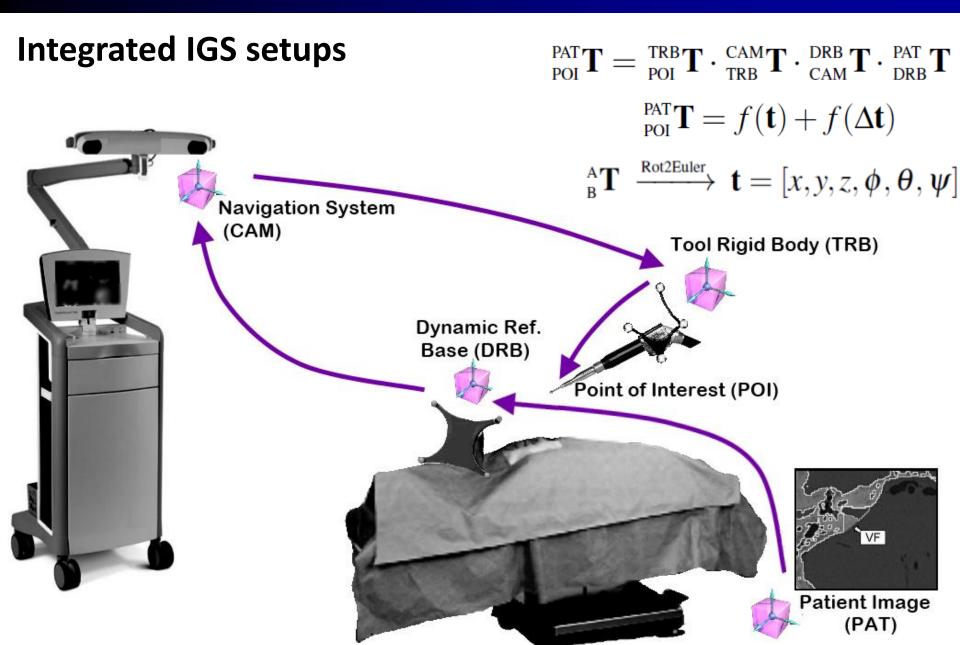
Problems with measurements

Accuracy of *treatment delivery* is important

- Difficult to measure routinely
- Single numbers are not meaningful

Ultimate goal

task specific measurement of uncertainty


Accuracy numbers

ICRA2011 workshop on Uncertainty in Automation

Robot	Company	Intrinsic accuracy	Repeat.	Application accuracy	_
Puma 200	Memorial Medical Center		0.05	2	, mm r
ROBODOC	Int. Surgical Systems Inc. Curexo Tech. Corporation	0.5 – 1.0		1.0 - 2.0	
NeuroMate	Inn. Medical Machines Int. Int. Surgical Systems Inc. Renishaw plc	0.75 / 0.6 0.36 ± 0.17	0.15	0.86 ± 0.32 1.95 ± 0.44	
da Vinci	Intuitive Surgical Inc.	1.35 1.02 ± 0.58			are in
da Vinci S	Intuitive Surgical Inc.	1.05 ± 0.24			es
CyberKnife	Accuray Inc.			0.42 ± 0.4 0.93±0.29	l values
B-Rob I	ARC GmbH, Seibersdorf			1.48 ± 0.62	All
B-Rob II	ACMIT (ARC GmbH)			0.66 ± 0.27 1.1 ± 0.8	
SpineAssist	Mazor Surgical Technologies			0.87 ± 0.63	_

Error in integrated systems

ICRA2011 workshop on Uncertainty in Automation

Propagation of errors

Erroneous transformation matrix calculation

$${}^{A}_{B}\widetilde{\mathbf{T}} = {}^{A}_{B}\mathbf{T} \cdot \Delta^{A}_{B}\mathbf{T} \text{ and } \Delta^{A}_{B}\mathbf{T}_{Rot} \approx \mathbf{I} + \theta \mathbf{N}$$

$${}^{A}_{B}\mathbf{T}_{Rot}(\mathbf{n}, \theta) = e^{\theta \mathbf{N}}, \text{ where } \mathbf{N} = \begin{bmatrix} 0 & -n_{z} & n_{y} \\ n_{z} & 0 & -n_{x} \\ -n_{y} & n_{x} & 0 \end{bmatrix}$$

$$\Delta^{A}_{B}\mathbf{T}_{Rot} \cdot \Delta^{A}_{B}\mathbf{T}_{Trans} \approx \Delta^{A}_{B}\mathbf{T}_{Trans}$$

$$\tilde{\mathbf{X}}_{A} = \mathbf{X}_{A} + \Delta \mathbf{X}_{A}$$

$$\tilde{\mathbf{X}}_{B} = {}^{A}_{B}\widetilde{\mathbf{T}}\mathbf{X}_{A} = \mathbf{X}_{B} + \Delta \mathbf{X}_{B}$$

$$\Delta \mathbf{X}_{B} = {}^{A}_{B}\mathbf{T}_{Rot}(\theta \mathbf{N}\mathbf{X}_{A} + \Delta \mathbf{X}_{A} + \Delta^{A}_{B}\mathbf{T}_{Trans})$$

where **X** is a 3D point and Θ is an angle of rotation.

Introduction X Motivation X Metrics in use X Propagation of errors Stochastic approach to CIS X Case study X Conclusion

Propagation of errors II

Covariance matrix based approximation

Stochastic approach to CIS

Modeling for complex system noise

 $_{\rm POI}^{\rm PAT}\mathbf{T} = f(\mathbf{t}) + f(\Delta \mathbf{t})$

Calculate the integral of the probability distribution function over the unsafe region (e.g., out of a Virtual Fixture):

$$\mathbf{P}(\mathrm{POI} \notin \mathrm{VF}) = \int_{\mathbf{t} \notin \mathrm{VF}} f(\mathbf{t}) \,\mathrm{d}\mathbf{t}$$

Scaling for safety features to critical locations:

 $\eta = w_1 \mathbf{P}(\mathbf{POI} \notin \mathbf{VF}_1) + w_2 \mathbf{P}(\mathbf{POI} \notin \mathbf{VF}_2) + \dots$

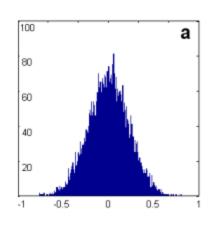
Stochastic approach allows to derive the distribution of the erroneous POI

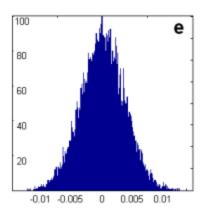
Introduction X Motivation X Metrics in use X Propagation of errors X Stochastic approach to CIS X Case study X Conclusion

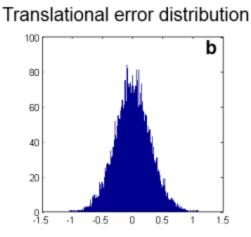
Application to integrated systems ICRA2011 workshop on Incertainty in Automation

80

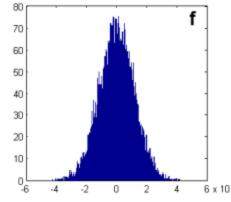
60

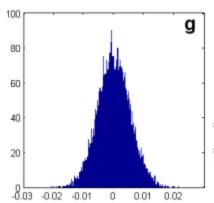

40


20

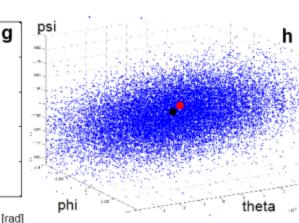

-0.5

Modeling for complex system noise


STD: [0.32, 0.28, 0.30, 0.002, 0.003, 0,005] along $[x, y, z, \phi, \theta, \psi]$



Rotational error distribution



0

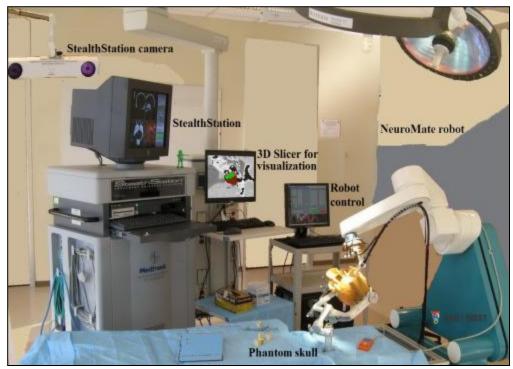
С

[mm]

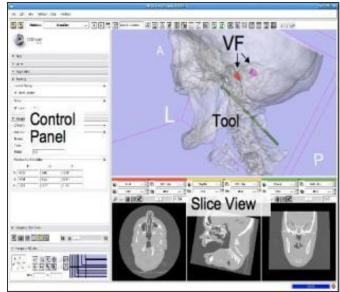
Application to integrated systems

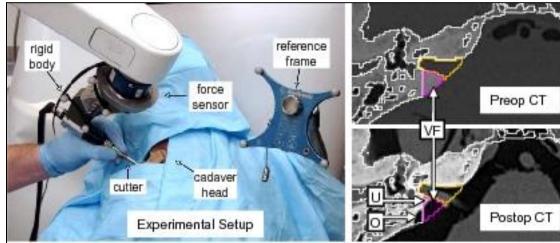
Modeling for complex system noise

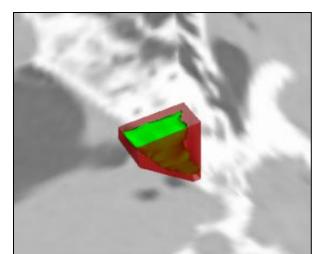
Pre-operation simulation


- Allows for estimation of real accuracy
- Notification of error distribution
- Optimal positioning of the devices

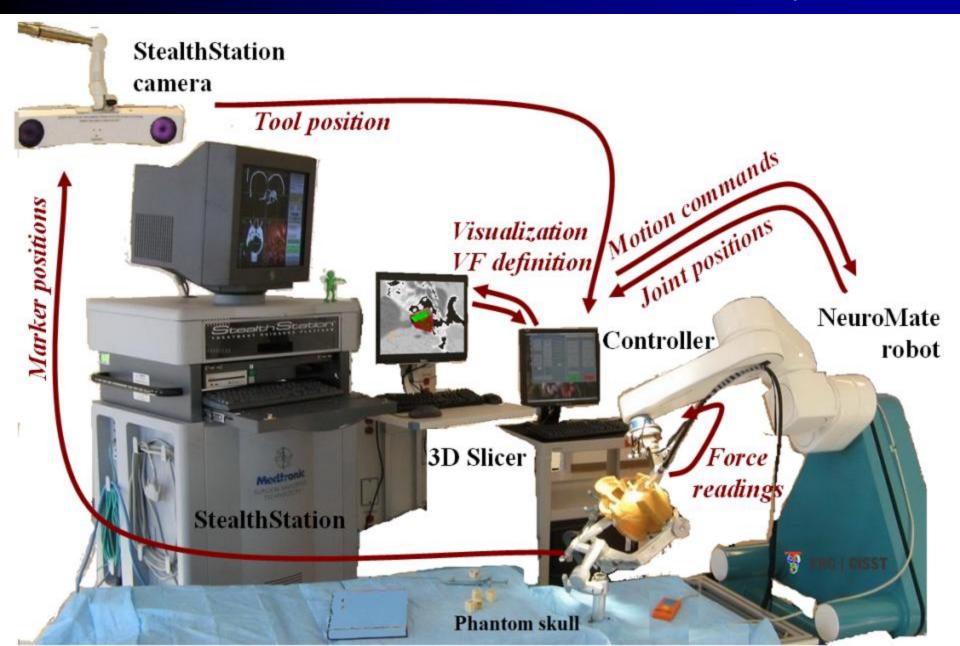
Application


Skull base drilling robot at CISST ERC

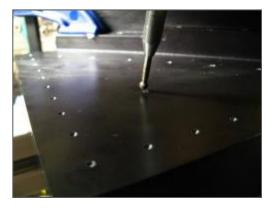

- PI: Dr. Peter Kazanzides
 - NeuroMate robot (Integrated Surgical Systems Inc.)
 - 5 DOF serial, FDA cleared
 - StealthStation surgical navigator (Medtronic Navigation Inc.)
 - FDA cleared
 - 6DOF force sensor (JR3 Inc.)
 - Surgical bone drill (Anspach Co.)
 - Slicer 3D
 - Control PC

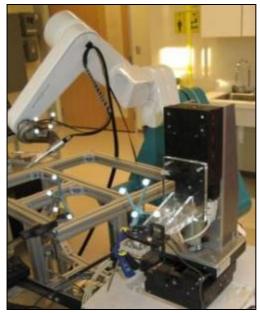


The JHU neurosurgery robot system



System operations

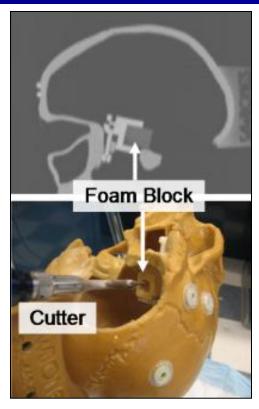

Accuracy measurements I

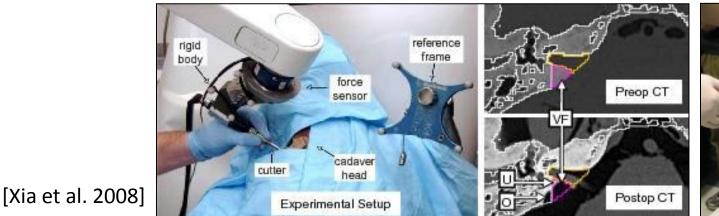

ICRA2011 workshop on Uncertainty in Automation

Using the Nebraska phantom (draft ASTM standard)

- NeuroMate robot
 - 0.36 mm FRE
 - 0.34 ± 0.17 mm TRE

- StealthStation navigation system
 - With hand-held probe
 - » 0.51 ± 0.42 mm TRE (FRE: 0.52 mm)
 - With the Robot Rigid Body
 - » 0.49 ± 0.22 mm TRE (FRE: 0.49 mm)

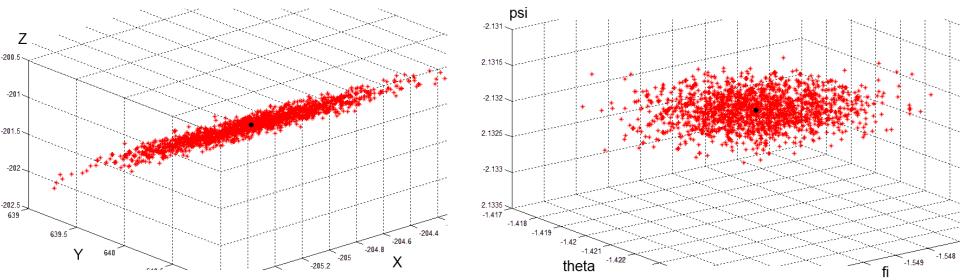



Accuracy measurements II

ICRA2011 workshop on Uncertainty in Automation

Determining application accuracy

- Foam block cutting
 - Overall accuracy: 0.79 ± 0.82 mm
- Cadaver tests
 - Application accuracy: average Ø 1 mm
 - Maximum overcut 2.5–3 mm



Stochastic approach to error estimation

Results for the JHU system

PCA showed that 2 axes account for : 99.7% of the variance along one plane 98.6% of the variance in rotations along one plane

This is due to the anisotropic arrangement of the devices

Pre-operative simulation should allow for optimal positioning of the devices

on X

wotivation

letrics in use × Case study

Ă

ropagation of errol

Uncertainty in CIS can cause significant problems

Integrated systems have complex theory for error propagation

Current hardware allows for on-site simulation:

- Provided inherent error statistics have been derived
- Better understanding of error distribution
- Specific handling of critical anatomy
- Proper risk assessment
- Understanding the OR conditions
- Optimal positioning of the devices, provide practical information in the user manual based on prior experience

Safer operation with intelligent surgical tools is the future!

Introduction X Motivation X Metrics in use X Propagation of errors X Stochastic approach to CIS X Case study X Conclusion

The research was funded by the Hungarian NKTH OTKA T80316 grant

The neurosurgical robotic setup belongs to the: Center for Computer Integrated Surgical Systems and Technology (CISST ERC) – Baltimore, MD, USA

Thank you for your attention!

MatterAuim(Dt+qs)

haidegger@ieee.org