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Motivation

Figure: SCAPE bin picker.

• Automatic picking of randomly
distributed objects from bins: ’Holy
Grail’ in the world of robot
automation

• Distinctive feature of bin-picking

scenario: grasp errors are allowed

• Conveyor belt with queue

• Idea: Utilization of huge amount of
grasp data generated in industrial
bin-picking for grasp learning

• Basic technique: Novel concept of
grasp densities (Detry et al. (2010))

• Our hypotheses: analysis of relative
success of different grasp poses can
improve performance of bin picking
robot
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Pose Space and Representation
• Pose: Elements of the six dimensional space of the special

Euclidean group SE(3) = R3 × SO(3)
• Position p ∈ R3

• Orientation R ∈ SO(3)

• Object relative gripper pose
• Distribution of grasp densities in pose space represented

nonparametrically by particles
• Calculation of each particle via Kernel density estimation

Kµ,σ(x) = Nµt,σt
(λ)Θµr,σr

(θ)
• Position part: trivariate Normal distribution Nµt,σt

(λ)
• Orientation part: Θµr,σr

(θ) : (two antipodal) von Mises
Fisher distributions

Figure: Detry et al. (2009).
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Calculation of of grasp densities

• Calculation of grasp densities pX|O=s(x) follows Detry et al.
(2011)

pX|O=o(x) =
pO|X=x(o)pX(x)

pO(o)

with pose X and output O (either success O = s or failure
O = f)

1 Generation of samples from pO,X(o, x) by selecting grasp xi
and observing outcome oi

2 Keeping only successful samples generates set T of samples
from distribution pO,X(s, x): i.e. T = {xi : (si, xi) ∈ S}

3 Continous grasp density representation through kernel density
estimation i.e. elements of T
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Calculation of of grasp densities

pX|O=o(x) =
pO|X=x(o)pX(x)

pO(o)

• Outcome: our continuous representation d(x) of grasp
densities is distributed proportional to pX|O=s(x)

d(x) =

n∑
i=1

wiKx̂i,σ(x) ∝ pX|O=s(x)

• Prior pO(o) is constant/independent of x

• Problem: Determining prior pX(x)
• Importance sampling to consider non-uniform sampling
• Samples are weighted by importance weight wi

5



Application of grasp densities

• Usage of grasp densities pX|O=s(x) for different types of
analysis (unrestricted/restricted pose space or only downward
grasp etc)

• Degree of opaqueness of greenly colored area codes likelihood
values

Figure: Detry et al. (2011).
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Grasp densities

• Different visualization of grasp densities for T -shaped object
from simulation (intensity of red codes likelihood values)

Figure: Left: grasp density. Right: failure-conditional density
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Success probabilities

Additional approach

• Going beyond grasp densities: calculating the success
probability for given pose, i.e. p0|X=x(s)

• In general two ways
1 Generative approach (using grasp densities)
2 Discriminative approach

• Generative model
• Produces distribution that allows sampling of pX(x) as

marginal distribution of pO,X(o, x)

• Discriminative model
• Direct calculation of p0|X=x(s)
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Generative approach to grasp success prediction

Calculation of pO|X=x(o)

pO|X=x(o) =
pX|O=s(x)pO(o)

pX(x)

• Calculation of pO|X=x(o) for o = s, f based on KDE on
respective set of sample {xi, si} or {xi, fi}

• Sum rule gives pX(x) = pX|O=s(x)pO(s) + pX|O=f (x)p(f)

• Other values also calculated from sample
• p0(o) is calculated from the relative frequency of success and

failures
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Discriminant methods

• Discriminant methods
• Learning pO|x=x(s) directly (e.g. kernel logistic regression,

Gaussian process classification)

• Simple supervised learning
• Based on labeled data (pose xi and output oi) each sample i
• Coding output value for success (+1) and (−1) for failure

• Output from learning machine: probability for success/failure
pO|X=x(s)/pO|X=x(f) for certain pose x

• Remark
• Noisy data, i.e. noise in input variable X and output variable O
• Unbalanced data (numbers of failures/successes)

• Discriminative methods under consideration
• Support vector machines

• Probabilistic output based on Platt (1999)

• Gaussian process classification
• Kernel logistic regression
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Grasp densities and probabilities for suction gripper

• Example from empirical data/industrial application

• Only certain grasp were performed (restriction by external
partner) with suction gripper

Figure: Analysis of grasp density left and probability right (dark red: high
propability).
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Grasp probabilities from discriminative model for for
suction gripper

• Ramifications the same, but discriminative model

• Success probabilities are given for the surface plane (coded by
intensity in red)

• Problem of extrapolation for non-tested regions: need for
wider exploration of the whole object (e.g. by simulation)

Figure: Left: Output from support vector machine. Right: Output from
Gaussian process classification
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Summary

• Starting point: improvement of bin picking by empirical
analysis of grasping trials

• Several alternatives based on different theoretical
underpinnings available

• Current research/suggestions:
• Extending analysis by simulation

• Allows easier sampling of pose space (or subspace of it)

• Use results from different sources (real robot/simulation) for
mutual improvements

• Use different methods (generative/discriminative) in
combination
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