Bootstrap Learning for Visual Perception on Mobile Robots ICRA-11 Uncertainty in Automation Workshop

Mohan Sridharan

Stochastic Estimation and Autonomous Robotics (SEAR) Lab Department of Computer Science Texas Tech University

May 9, 2011

Collaborators

- Mohan Sridharan, Texas Tech University.
- Xiang Li, Shiqi Zhang, Mamatha Aerolla (Graduate Students); Texas Tech University.
- Peter Stone; The University of Texas at Austin.
- Ian Fasel; The University of Arizona.
- Jeremy Wyatt, Richard Dearden; University of Birmingham (UK).

Motivation Talk Outline

Desiderata + Challenges

• Focus: Integrated systems, visual inputs.

Desiderata:

- Real-world robots systems require high reliability.
- Dynamic response requires *real-time operation*.
- Learn from *limited feedback* and operate *autonomously*.

Challenges:

- Partial observability: varying levels of uncertainty.
- Constrained processing: large amounts of raw data.
- Limited human attention: consider high-level feedback.

Motivation Talk Outline

Research Thrusts

- Learn models of the world and revise learned models over time (*bootstrap learning*).
- Tailor learning and processing to the task at hand (*probabilistic planning*).

• Enable human-robot interaction with high-level input (*Human-robot Interaction*).

Motivation Talk Outline

Robot Platforms and Generalization

• Evaluation on robot platforms and in simulated domains.

• Social engagement in elderly care homes.

Motivation Talk Outline

Talk Outline

- Unsupervised learning of object models:
 - Local, global and temporal visual cues to learn probabilistic layered object models.
- Hierarchical planning for visual learning and collaboration:
 - Constrained convolutional policies and belief propagation in hierarchical POMDPs.

• Summary.

Motivation Talk Outline

Talk Outline

- Unsupervised learning of object models:
 - Local, global and temporal visual cues to learn probabilistic layered object models.
- Hierarchical planning for visual learning and collaboration:
 - Constrained convolutional policies and belief propagation in hierarchical POMDPs.

• Summary.

Motivation Learning Phase Recognition Phase Experimental Results

Motivation

- Learning object models autonomously:
 - Motivation: novel "objects" can be introduced; existing objects can move.
 - Observations: moving objects are interesting! Objects have considerable structure.
- Approach:
 - Analyze image regions corresponding to moving objects.
 - Extract visual features to learn probabilistic object models.
 - Revise models over time to account for changes.

Motivation Learning Phase Recognition Phase Experimental Results

Tracking Gradient Features

• Tracking and cluster gradient features based on velocity.

• Model spatial coherence of gradient features.

Motivation Learning Phase Recognition Phase Experimental Results

Learning Color Features

- Use *perceptually-motivated* color space.
- Learn color distribution statistics.
- Learn second-order distribution statistics:

$$JS(a,b) = \frac{1}{2} \{ KL(a,m) + KL(b,m) \}, \quad m = \frac{1}{2} (a+b)$$
$$KL(a,m) = \sum_{i} \{ a_{i} ln \frac{a_{i}}{m_{i}} \}$$

Motivation Learning Phase Recognition Phase Experimental Results

Parts-based Models

- Graph-based segmentation of input images.
- Gaussian models for individual parts.
- Gamma distribution for inter-part dissimilarity and intra-part similarity.

Motivation Learning Phase Recognition Phase Experimental Results

Layered Object Model

Model Overview:

Motivation Learning Phase Recognition Phase Experimental Results

Layered Object Model

• Bayesian belief propagation:

Motivation Learning Phase Recognition Phase Experimental Results

Recognition

- Stationary and moving objects motion required only to learn object models.
- Extract features and compare with learned models.
- Find region of relevance based on gradient features.

Motivation Learning Phase Recognition Phase Experimental Results

Recognition - Gradients

Find probabilistic match using spatial similarity measure.

Х	1	2		Ν
1	0	-1	•••	-1
2	1	0		1
:	:	:	·	:
Ν	1	-1		0

$$SSM(scv_i, scv_{test}) = rac{N_{x,correct}^{i,test} + N_{y,correct}^{i,test}}{2(N-1)}, \ SSM \in [0,1]$$

Motivation Learning Phase Recognition Phase Experimental Results

Recognition - Color Distributions

Motivation Learning Phase Recognition Phase Experimental Results

Recognition - Parts-based Models

Dynamic programming to match learned models over the relevant region.

• Similarity within a part, dissimilarity between parts.

$$p_{j}^{i,arr} = f(sim) \cdot f(diff)$$
$$p^{i,arr} = \sum_{j} w_{j}^{l_{j}} \cdot p_{j}^{i,arr}$$

Motivation Learning Phase Recognition Phase Experimental Results

Recognition - Overall

- Combine evidence from individual visual features.
- Bayesian update for belief propagation.

• Recognize objects or identify novel objects.

Motivation Learning Phase Recognition Phase Experimental Results

Experimental Results

Good classification and recognition performance.

p(O A)	Box	Human	Robot	Car	Other
Box	0.913	0.013	0.02	0	0.054
Human	0.027	0.74	0.007	0.013	0.213
Robot	0.033	0.007	0.893	0	0.067
Car	0	0.02	0	0.833	0.147

Motivation Formulation Experimental Results

Talk Outline

- Unsupervised learning of object models:
 - Local, global and temporal visual cues to learn models.

• Hierarchical planning for visual learning and collaboration:

 Constrained convolutional policies and belief propagation in POMDPs.

• Summary.

Motivation Formulation Experimental Results

Motivation

- Large amount of data, many processing algorithms.
- Cannot learn all models comprising all possible features!
- Sensing and processing can vary with task and environment:
 - Where do I look? What do I look for?
 - How to process the data?
- Approach: tailor sensing and processing to the task.
 - Partially Observable Markov Decision Processes (POMDPs).

Motivation Formulation Experimental Results

POMDP Overview

- Tuple: $\langle \mathcal{S}, \mathcal{A}, \mathcal{Z}, \mathcal{T}, \mathcal{O}, \mathcal{R} \rangle$
- Belief distribution B_t over states.
- Actions A.
- Observations Z: action outcomes.
- Transition function: $\mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S}' \mapsto [0, 1]$

- Belief State Observations THE ENVIRONMENT Actions
- Observation function $\mathcal{O}: \mathcal{S} \times \mathcal{A} \times \mathcal{Z} \mapsto [0, 1]$
- Reward specification $\mathcal{R} : \mathcal{S} \times \mathcal{A} \mapsto \Re$
- Policy $\pi: B_t \mapsto a_{t+1}$

Motivation Formulation Experimental Results

Challenges

- State space increases exponentially.
- Policy generation methods are exponential (worst-case) in the state space dimensions.
- Model definition may not be known and may change.
- Intractable for real-world applications!
- Observations:
 - Only a subset of scenes and inputs are relevant to any task.
 - Visual sensing and processing can be organized hierarchically.

Motivation Formulation Experimental Result

Hierarchical Visual Planning

What to process:

How to process:

- Constrained convolutional policies.
- Automatic belief propagation.

Motivation Formulation Experimental Results

HL Search – Convolutional Policies

• Rotation and shift invariance of local visual search.

$$\begin{split} \bar{K}(s) = & (\pi^{H} \otimes \ C_{m}^{K})(s) = \int \pi^{H}(\tilde{s}) C_{m}^{K}(s-\tilde{s}) d\tilde{s}, \quad K = (\sum_{a_{j}} \bar{K}) \cdot / W \\ \pi_{C}^{H}(s) = & (K \otimes C_{m}^{E})(s) = \int K(\tilde{s}) C_{m}^{E}(s-\tilde{s}) d\tilde{s} \end{split}$$

Mohan Sridharan, TTU

Uncertainty in Automation

Experimental Results

00000000

- Ad-hoc Policy

- Convlutional Policy

Experimental Results

Accurate and efficient visual search.

Reliable (93% vs 87%) and autonomous processing.

Motivation Formulation Experimental Results

Multirobot Collaboration

Extension to multirobot collaboration (96% vs. 88%).

Summary Challenges References Extras

Talk Outline

- Unsupervised learning of object models:
 - Local, global and temporal visual cues to learn models.

• Hierarchical planning for visual learning and collaboration:

• Constrained convolutional policies and belief propagation in POMDPs.

Summary.

Summary Challenges References Extras

Summary

- Robot autonomously acquires models for different object categories. Detects and tracks objects in subsequent images with high (≥ 90%) accuracy.
- Hierarchical planning enables a team of robots to share beliefs and collaborate robustly in dynamic domains.
- Learning and hierarchical planning inform and guide each other to result in autonomous (and real-time) operation of mobile robots in complex environments.

Summary Challenges References Extras

Additional Challenges

- Learn correlations between visual cues to learn better object models.
- Assess quality of (information in) object models. Infer lack of information and the presence of novel objects.
- Reason with non-visual inputs by incorporating hierarchical decompositions that match corresponding cognitive requirements.

Summary Challenges **References** Extras

Recent Papers I

• Xiang Li, Mohan Sridharan and Shiqi Zhang.

Autonomous Learning of Vision-based Layered Object Models on Mobile Robots. To Appear In the International Conference on Robotics and Automation (ICRA 2011), Shanghai, China, May 9-13, 2011.

 Shiqi Zhang, Mohan Sridharan and Xiang Li. To Look or Not to Look: A Hierarchical Representation for Visual Planning on Mobile Robots. To Appear In the International Conference on Robotics and Automation (ICRA 2011), Shanghai, China, May 9-13, 2011.

Summary Challenges References Extras

Recent Papers II

- Xiang Li and Mohan Sridharan. Safe Navigation on a Mobile Robot using Local and Temporal Visual Cues. In the International Conference on Intelligent Autonomous Systems (IAS 2010), Ottawa, Canada, August 30-September 1, 2010.
- Mohan Sridharan, Jeremy Wyatt and Richard Dearden.
 Planning to See: A Hierarchical Approach to Planning Visual Actions on a Robot using POMDPs. Artificial Intelligence Journal, Volume 174, Issue 11, pages 704-725, July 2010.
- All papers available for download:

www.cs.ttu.edu/~smohan/Publications.html

Summary Challenges References Extras

We are done!

Questions? Comments?

