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Desiderata + Challenges

@ Focus: Integrated systems, visual inputs.

@ Desiderata:
e Real-world robots systems require high reliability.
e Dynamic response requires real-time operation.
e Learn from limited feedback and operate autonomously.

@ Challenges:
e Fartial observability: varying levels of uncertainty.
e Constrained processing: large amounts of raw data.
e Limited human attention: consider high-level feedback.
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Research Thrusts

@ Learn models of the
world and revise learned
models over time
(bootstrap learning).

@ Tailor learning and
processing to the task at
hand (probabilistic
planning).

Bootstrap
Learning

Simu_ll_ation
Robot Evaluation,
Human-Robo

Interaction
Probabilistic
Planning

@ Enable human-robot interaction with high-level input

(Human-robot Interaction).
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Robot Platforms and Generalization

@ Evaluation on robot platforms and in simulated domains.

Human Factors
Assessment

Robots for
Social Engagement
Boolstrap'Lemulalion and
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@ Unsupervised learning of object models:

e Local, global and temporal visual cues to learn probabilistic
layered object models.

@ Hierarchical planning for visual learning and collaboration:

e Constrained convolutional policies and belief propagation in
hierarchical POMDPs.

@ Summary.
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@ Unsupervised learning of object models:

e Local, global and temporal visual cues to learn probabilistic
layered object models.
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Motivation

@ Learning object models autonomously:
e Motivation: novel “objects” can be introduced; existing

objects can move.
e Observations: moving objects are interesting! Objects have

considerable structure.

@ Approach:
e Analyze image regions corresponding to moving objects.
e Extract visual features to learn probabilistic object models.
e Revise models over time to account for changes.
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Learning Color Features

PROB

rg

DIST

@ Use perceptually-motivated color space.

@ Learn color distribution statistics.

@ Learn second-order distribution statistics:
JS(a,b) =1{KL(am)+KL(b,m)}, m=}(a+b)
KL(a,m) :Z,{a,-ln%}
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Parts-based Models

@ Graph-based segmentation of input images.
@ Gaussian models for individual parts.

@ Gamma distribution for inter-part dissimilarity and intra-part
similarity.
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Layered Object Model

@ Model Overview:
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Learning Object Models

Layered Object Model

@ Bayesian belief propagation:

Layered Object Model

Learned

p(clo)

Object Model

p(ilo)

p(glo)

Second—order}| - - - Spatial Coherence i» --| Part-based
Statistics Models

B, P, B
Color Distributions | |Image Gradients Graph-based
Segmentation
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Recognition

@ Stationary and moving objects — motion required only to
learn object models.

@ Extract features and compare with learned models.
@ Find region of relevance based on gradient features.

CAR?

HUMAN?

OTHERS?

BOX?

i o
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Recognition - Gradients

Find probabilistic match using spatial similarity measure.

X 1 2 N Y 1 2 N
al o =1 =1 al (e] al 1
2! at [e] ak 2 =1 o 1
N 1 -1 0 N -1 al o)
Ni,test + i, test
X,correct ,correct
SSM(scv;, SCViest) = Y , SSM € [0,1]

2(N—1)
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Recognition - Color Distributions
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Recognition - Parts-based Models

@ Dynamic programming to match learned models over the
relevant region.

.

H 1 Learned Rectangle

|:| New Detected Rectangle
- Interesting Region

@ Similarity within a part, dissimilarity between parts.
pp?" =f(sim)-f(diff)

. I
/,arr — . _I. "varr
p 2 WP
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Recognition - Overall

@ Combine evidence from individual visual features.
@ Bayesian update for belief propagation.

Layered Object Model

p(clo) p(glo)
pilo)
Second-ordert - --| Spatial Coherence |» --| Part—based
Statistics Models
B P B

Color Distributions

‘ Image Gradients Graph-based

ion

@ Recognize objects or identify novel objects. E
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Experimental Results

Good classification and recognition performance.

o

b1 Ob2  Ob3  Ob4  ObS 02

.
e = o —

p(OJA) | Box | Human | Robot | Car | Other
Box 0.913 | 0.013 0.02 0 0.054
Human | 0.027 | 0.74 0.007 | 0.013 | 0.213
Robot | 0.033 | 0.007 | 0.893 0 0.067
Car 0 0.02 0 0.833 | 0.147

Mohan Sridharan, TTU Uncertainty in Automation



Motivation
Formulation

Hierarchical Plannin
9 Experimental Results

Talk Outline

@ Hierarchical planning for visual learning and collaboration:

e Constrained convolutional policies and belief propagation in
POMDPs.
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Motivation

@ Large amount of data, many processing algorithms.
@ Cannot learn all models comprising all possible features!

@ Sensing and processing can vary with task and
environment:

e Where do | look? What do | look for?
e How to process the data?

@ Approach: tailor sensing and processing to the task.

e Partially Observable Markov Decision Processes
(POMDPs).
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Hierarchical Planning

POMDP Overview

@ Tuple: (S, A, Z,T,0,R)

@ Belief distribution B; over St
states.

@ Actions A. e

@ Observations Z: action 7

THE

outcomes. ENVIRONMENT

@ Transition function: o
T:8SxAxS —[0,1]

@ Observation function O : S x A x Z — [0,1]

@ Reward specification R : S x A +— R

@ Policy 7 : Bi — a1
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Challenges

@ State space increases exponentially.

@ Policy generation methods are exponential (worst-case) in
the state space dimensions.

@ Model definition may not be known and may change.
@ Intractable for real-world applications!

@ Observations:
e Only a subset of scenes and inputs are relevant to any task.
e Visual sensing and processing can be organized
hierarchically.
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Hierarchical Planning

Hierarchical Visual Planning

— Where to look:
Communication Layer ere fo oo

(CL) Il

HL-POMDP ~—— HL-POMDP
R 3 = i

IL-POMDP IL-POMDP

Hierarchical Planning
Bootstrap Learning

How fo process:

=

LL-POMDP LL-POMDP

@ Constrained convolutional policies.
@ Automatic belief propagation. E
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HL Search — Convolutional Policies

@ Rotation and shift invariance of local visual search.
K(s) =(7"® CK)(s)=[ =" (3)CK(s—3)d5, K=(2,, K)-/w
T8(s) =(K®CF)(s)=/ K(8)CE(s—8)ds

Baseline Policy Space @
7 % Convolution Pnlic§ }

_—— - -
P ——— = State1 =
State? _om— = - ’ ———
= ‘ == %=
s : : State2 —
State 13— i : —~
e

e s a—
State25 - e - —— State 32 -

Kernel J State 49 i
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Experimental Results

@ Accurate and efficient visual search.

1
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@ Reliable (93% vs 87%) and autonomous processing.

Joint POMDP vs Hierarchical POMDP Planning + Execution Time Comparison

20,

Time (seconds)
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Hierarchical Planning

Multirobot Collaboration

Extension to multirobot collaboration (96% vs. 88%).

= Number of Targets: 1
-+ Number of Targets: 2

Number of Targets: 3
-#-Number of Targets: 4

-2 robots searching for 2 targets
~*-3 robots searching for 1 targets
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@ Summary.
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Summary

@ Robot autonomously acquires models for different object
categories. Detects and tracks objects in subsequent
images with high (> 90%) accuracy.

@ Hierarchical planning enables a team of robots to share
beliefs and collaborate robustly in dynamic domains.

@ Learning and hierarchical planning inform and guide each
other to result in autonomous (and real-time) operation of
mobile robots in complex environments.
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Additional Challenges

@ Learn correlations between visual cues to learn better
object models.

@ Assess quality of (information in) object models. Infer lack
of information and the presence of novel objects.

@ Reason with non-visual inputs by incorporating hierarchical
decompositions that match corresponding cognitive
requirements.
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Recent Papers |

@ Xiang Li, Mohan Sridharan and Shiqi Zhang.
Autonomous Learning of Vision-based Layered Object
Models on Mobile Robots. To Appear In the International
Conference on Robotics and Automation (ICRA 2011),
Shanghai, China, May 9-13, 2011.

@ Shigi Zhang, Mohan Sridharan and Xiang Li. To Look or
Not to Look: A Hierarchical Representation for Visual
Planning on Mobile Robots. To Appear In the
International Conference on Robotics and Automation
(ICRA 2011), Shanghai, China, May 9-13, 2011.
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Recent Papers |l

@ Xiang Li and Mohan Sridharan. Safe Navigation on a
Mobile Robot using Local and Temporal Visual Cues.
In the International Conference on Intelligent Autonomous
Systems (IAS 2010), Ottawa, Canada, August
30-September 1, 2010.

@ Mohan Sridharan, Jeremy Wyatt and Richard Dearden.
Planning to See: A Hierarchical Approach to Planning
Visual Actions on a Robot using POMDPs. Atrtificial
Intelligence Journal, Volume 174, Issue 11, pages
704-725, July 2010.

@ All papers available for download:
WWwW.CS.ttu.edu/~smohan/Publications.html

Mohan Sridharan, TTU Uncertainty in Automation


www.cs.ttu.edu/~smohan/Publications.html

Summary

Challenges

References
Summary Extras

We are done!

Questions? Comments?
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