A PODS-based Extended Kalman Filter: Quantifying Sensing Uncertainties in Automatic Bird Species Detection

Dezhen Song Associate Professor Dept. of Computer Science and Engineering, Texas A&M University

Microsoft * Smithsonian Panasonic

Thanks to:

Ni Qin, Yiliang Xu, Chang Young Kim, Wen Li, TAMU Ken Goldberg, UC Berkeley Ron Rohrbach, Cornell Lab of Ornithology John Fitzpatrick, Cornell Lab of Ornithology David Luneau, U Arkansas Hopeng Wang and Jingtain Liu, Nankai University John Rappole, Smithsonian Selma Glasscock, Welder Wildlife Foundation **National Science Foundation** The Nature Conservancy Arkansas Game and Fish Commission U.S. Fish and Wildlife Service Arkansas Electric Cooperative Cache River National Wildlife Refuge

Biological observation is arduous, expensive, dangerous, lonely

Assisting the search for IBWO

The Ivory-billed Woodpecker by James T. Tanner

Detecting Rare Birds

- Low occurrence (e.g., <10 times per year)
- Short duration (e.g., < 1 sec. in FOV)
- Huge video data for human identification.
- Setup and maintenance in remote environments.

Design Goals

- Accuracy
 - low false negative
- Data reduction
 - filtering the targeted bird
- Easy to setup and maintain
 monocular vision system

Related Work

- Natural cameras
 - DeerCam
 - Africa web cams at the Tembe
 - Elephant part
 - Tiger web cams
 - James Reserve Wildlife Observatory
 - Crane Cam
 - Swan Cam

Related Work

- Motion detection and tracking
 - Elgammal, Grimson, Isard ...
- Periodic motion detection
 - Culter, Ran, Briassouli ...

- 3D inference using monocular vision
 - Ribnick, Hoiem, Saxena ...

Related Work

- Kalman Filter
 - SLAM, tracking, recognition ...
 - Convergence
 - ample observation data
 - manageable noise

less than 11 data pointssignificant image noise

Bird detection problem

- Input
 - targeted bird body length l_b and speed range $\mathcal{V} = [v_{\min}, v_{\max}]$.
 - a sequence of *n* images containing a moving object

- Output
 - to determine if the object is a bird of targeted species

Assumptions

- Static monocular camera
 - High resolution
 - Narrow FOV

- Single bird in FOV
 Motion segmentation
- Constant bird velocity

 High flying speed
 Narrow camera FOV

Observation 1: Invariant body length in Steady flight

Invariant body length in steady flight

 $\mathbf{z} = [u^h, v^h, u^t, v^t]^T$ (observation)

Bird Body Axis Filtering

• Observation 2: Body axis orientation close to tangent line of trajectory during steady flight

Modeling A Flying Bird

Extended Kalman Filter

Determine Species for Noise-free Cases

Estimation with Observation Noises

Probable Observation Data Set (PODS)

 $\mathcal{E}(\mathbf{X}^{1:n}) < \delta$

EKF Convergence Metrics

EKF converges $\iff \|\mathbf{\hat{v}}(k|k) - \mathbf{\hat{v}}(k-1|k-1)\| \to 0$

$$arepsilon(\mathbf{X}^{1:n}) = \sum_{k=2}^{n} \omega(k) \|\mathbf{\hat{v}}(k|k) - \mathbf{\hat{v}}(k-1|k-1)\|$$

$$\omega(k) = E\left(\frac{\|\hat{\mathbf{v}}\|}{\|\hat{\mathbf{v}}(k|k) - \hat{\mathbf{v}}(k-1|k-1)\|}\right)$$

PODS-EKF

Decision-making:

Dezhen Song and Yiliang Yu, Low False Negative Filter for Detecting Rare Bird Species from Short Video Segments using a Probable Observation Data Set-based EKF Method, IEEE Transactions on Image Processing, vol. 19, no. 9, Sept. 2010, pp. 2321-2331

PODS-EKF Approximate Computation

Dezhen Song and Yiliang Yu, *Low False Negative Filter for Detecting Rare Bird Species from Short Video Segments using a Probable Observation Data Set-based EKF Method*, IEEE Transactions on Image Processing, vol. 19, no. 9, Sept. 2010, pp. 2321-2331

PODS-EKF Approximate Computation

Dezhen Song and Yiliang Yu, *Low False Negative Filter for Detecting Rare Bird Species from Short Video Segments using a Probable Observation Data Set-based EKF Method*, IEEE Transactions on Image Processing, vol. 19, no. 9, Sept. 2010, pp. 2321-2331

Algorithm

Algorithm 1: PODS-EKF based Bird Detection Algorithm

input : n frames with a segmented motion sequenceoutput: TRUE or FALSE for the targeted species.for the segmented motion block in i-th frame do

calculate the geometric center point C_i of the bird;

Connect C_i , i = 1, 2, ..., n to generate a piecewise linear trajectory;

Obtain $\bar{\theta}$ from the trajectory;

for the segmented motion block in *i*-th frame do Obtain z(i) using the BBAF in (2);

Initialize the EKF using (20) and (21); Solve the constrained nonlinear optimization problem in (14);

```
if \|\widetilde{\mathbf{v}}(n|n)\| \in \mathcal{V} \text{ AND } \varepsilon(\widetilde{\mathbf{X}}^{1:n}) < \delta then
| return TRUE;
```

else

return FALSE;

Experiments

- Both simulated and real data
- A desktop PC with an Intel Core 2 Duo 2.13GHz CPU and 2GB RAM
- Matlab 7.0 (motion detection) and Visual C++ 8.0 (PODS-EKF)
- Arecont AV3100 camera
- Bird species tested:

Species	l_b (cm)	\mathcal{V} (km/h)
House sparrow	15	[29, 40]
Rock pigeon	33	[24, 56]
Ivory-billed woodpecker(IBWO)	48	[32, 64]
Red-tailed hawk	56	[32, 64]

Convergence of different EFKs on Rock Pigeon

Simulation on three birds

Physical Experiment on Rock Pigeon

ROC Curves for Rock Pigeon

Area under ROC curve: 91.5% in Simulation; 95.0% in Experiment.

Data reduction

- Oct. 2006 Oct. 2007
- Motion detection: 29.41 TB to 27.42 GB
- PODS-EKF: 27.42 GB to 146.7 MB (~960 images)
- Overall reduction rate: 99.9995%

What we found

Pileated woodpecker (cousin of IBWO)

Northern flicker (smaller than IBWO)

Red-tailed Hawk (larger than IBWO)

Conclusion

- Low false negative bird filter: PODS-EKF
- Cope with insufficient noisy observation data
- 95% area under ROC curve
- 99.9995% data reduction

Current and Future Work

Examine wing-flapping motion Wingbeat frequency is unique for each species

Wing Kinematic Model

Current & Future Work: AnyFish

Thanks!

BELIEVE Websites: http://telerobot.cs.tamu.edu http://rbt.cs.tamu.edu

Seagull:Mean2.74 HzS.D.0.22 Hz

