
Automatic Pavement Crack Detection by
Multi-Scale Image Fusion

Haifeng Li, Dezhen Song, Yu Liu, and Binbin Li

Abstract—Pavement crack detection from images is a challeng-
ing problem due to intensity inhomogeneity, topology complexity,
low contrast, and noisy texture background. Traditional learning-
based approach has difficulty in obtain representative training
samples. We propose a new unsupervised multi-scale fusion crack
detection (MFCD) algorithm that does not require training data.
First, we develop a windowed minimal intensity path based
method to extract the candidate cracks in the image at each
scale. Second, we find the crack correspondences across different
scales. Finally, we develop a crack evaluation model based on a
multivariate statistical hypothesis test. Our approach successfully
combines strengths from both the large-scale detection (robust
but poor in localization) and the small-scale detection (detail-
preserving but sensitive to clutter). We analyze and experimen-
tally test the computational complexity of our MFCD algorithm.
We have implemented the algorithm and have it extensively tested
on two public datasets. Compared with six existing methods,
experimental results show that our method outperforms all
counterparts. In particular, it increases the Precision, Recall and
F1-measure over the state-of-the-art by 22%, 12% and 19%,
respectively, on one public dataset.

I. INTRODUCTION

Pavement distresses are common failures of road con-
structions, where cracks are the major factors and need to
be monitored and evaluated reliably and periodically [1]–
[3]. Traditional manual crack detection methods are very
time-consuming, labor-intensive, with low-accuracy, and error
prone. It is necessary to develop an automatic crack detec-
tion method for the accurate detection of pavement cracks.
However, automatic crack detection is challenging due to
intensity inhomogeneity, topology complexity, low contrast,
and noisy backgrounds. As a result, local image-processing
methods, such as intensity thresholding, and edge detection
based methods can only obtain a set of disjoint crack fragments
with high false positive rate. Machine learning approaches
have been proposed, but the selection of parameters depends
on crack variations and image quality. Moreover, the results

This work was supported in part by National Science Foundation under
IIS-1318638, NRI-1426752, NRI-1526200, and NRI-1748161, by National
Science Foundation of China under grant 61305107, by Open Fund Project
of Fujian Provincial Key Laboratory of Information Processing and Intelligent
Control (Minjiang University) under grant MJUKF201732, and by the Funda-
mental Research Funds for the Central Universities under grant 3122016B006,
and by Chinese Scholarship Council.

H. Li and Y. Liu are with CS Department, Civil Aviation University of
China, Tianjin, 300300, China, and also with Fujian Provincial Key Labora-
tory of Information Processing and Intelligent Control, Minjiang University,
Fuzhou, 350108, China. Email: hfli@cauc.edu.cn.

D. Song and B. Li are with CSE Department, Texas A&M Univer-
sity, College Station, TX 77843, USA. Emails: dzsong@cse.tamu.edu and
binbinli@tamu.edu.

(a) Original image

(b) Generated
multi-scale images

(c) Detected cracks
at each scale

(d) Cracks from
multi-scale fusion

1

2

n

Fig. 1. An illustration of our MFCD algorithm outline. Given an original
image, we apply Gaussian blur to generate multi-scale images with different
standard deviations σ1 < σ2 < . . . < σn representing different scales, then
detect cracks at each scale, and finally fuse and filter cracks to obtain results.

from these learning methods depend on the quality of manually
labeled training data sets which are difficult to obtain, because
crack images have large variations due to different lighting
conditions, surface types, and background texture.

In fact, crack images exhibit different characteristics at
different scales: at a large scale, crack detection is reliable,
but its localization is poor and may miss small details; at
a small scale, details are preserved, but detection suffers
greatly from clutters in background texture. However, the
key challenge is how to effectively combine the strengths
of different scales to improve crack detection performance.
To deal with the challenges, we propose a new unsupervised
multi-scale fusion based crack detection (MFCD) algorithm
that does not require labeled training data (See Fig. 1). MFCD
computes the maximum average score of cracks at different
scales. By extracting crack features for every probable target
scale and evaluating the cracks jointly across scales, MFCD
fuses and filters cracks at all scales. Another contribution of
this paper is our improved minimal intensity path selection
method which has two advantages. One advantage is that
it only relies on statistical parameters instead of arbitrary
thresholds, the other advantage is that the method has no prior
training requirement which makes it easy to use in application.

We have implemented our MFCD algorithm and extensively
tested it on two public datasets in comparison to six existing
methods. Experimental results show that our method con-
sistently outperforms the counterparts. More specifically, our
MFCD algorithm increases Precision, Recall and F1-measure
over the state-of-the-art by 22%, 12% and 19%, respectively,

on one public dataset.
The rest of paper is organized as follows: we summarize

the related work in Section II before we introduce our crack
detection problem in Section III. We detail our algorithm
design in Section IV and analyze algorithm performance in
V. We test our algorithm in experiments in Section VI and
conclude our paper in Section VII.

II. RELATED WORK

Popular image-based crack detection methods can be classi-
fied as four types: intensity thresholding methods, edge detec-
tion methods, machine learning techniques, and morphological
methods.

Intensity thresholding methods [4], [5] have been widely
studied due to their simplicity. These methods are sensitive to
noise, leading to unreliable crack detection results especially
for field images with significant visual clutters under poor
lighting conditions. Furthermore, selecting the appropriate
threshold value is challenging.

Edge detection methods [6], [7] are also widely adopted.
However, the main drawback is that edge detection methods
can only detect a set of disjoint crack fragments and often fail
in low-contrast and high-clutter images.

Machine learning techniques [8] have become more popular
in recent years which include methods that build on techniques
such as support vector machines [9], [10], random forest [11],
random structured forest [12], and neural networks [13], [14].
In these learning methods, a pavement image is often divided
into a number of sub-images, each of which is represented
by a vector of features extracted from this sub-image. These
sub-images are then used for training and classification for
crack detection. However, since the training and classification
are conducted at each sub-image and as local methods, they
cannot exactly segment out crack curves over the whole image
because it often only provides a label to the sub-image as
its output. Furthermore, a supervised training stage is needed
which requires accurately labeled data, a difficult requirement
for applications with large lighting and scene variations.

Morphological methods [15]–[17] exploits the connectivity
among crack pixels and have been successfully used in pave-
ment crack detection research. However, their performance
are usually dependent upon the parameter choices [18] which
requires manual extensive parameter tuning for each data
set. Our method is a variation of morphological methods but
focusing on removing arbitrary threshold selection and being
self-adaptive to different images because we employ statistic
parameters in the threshold setting.

More specifically, our method builds on the existing mini-
mal intensity path based techniques which find the best paths
between pairs of endpoints of potential cracks. Gavilan et al.
propose a seed-based approach [19] by combining multiple
directional non-minimum suppression with a symmetry deck,
where seeds are linked by computing paths with the lowest
mean pixel intensities that meet the symmetry restrictions.
Kaul et al. [20] propose a method to detect the same types of
contour-like image structures with less prior knowledge about

both the topology and the endpoints of the desired curves. To
avoid false detections caused by low intensity loops, Amhaz
et al. propose a two-stage minimal intensity path selection
algorithm [17] which first selects endpoints at the local scale
and then selects minimal intensity paths at the global scale.
Built on this approach and to improve the accuracy and com-
putation speed, our new method employs techniques such as
crack seeds clustering & removal, windowed path generation,
parameter selection, and crack grouping & refinement.

Our MFCD algorithm is also inspired by multi-scale analy-
sis methods which capture the intrinsic geometrical structure
that is key in human visual perception. Existing techniques,
such as wavelet transforms [21], particle filters [22], beamlet
transform [23], are essential different types of multi-scale
methods. The main challenge of these multi-scale analysis
methods is to select the right scale for identifying useful
features or how to combine the detections at different scales to
form output. Most approaches take a simplistic cue combina-
tion: they either accept results (after thresholding) at all scales,
or accept results that appear at the coarsest scale. Our method
fuses results from different scales using statistical hypothesis
test.

III. PROBLEM FORMULATION

A. Assumption

We assume a crack has a lower intensity value than that
of the background image. This assumption can be accepted
in most general cases since cracks always absorb more light
than other areas and often appear as dark curves or tapes in
the image.

B. Notations

Common notations are defined as follows,
• Is, s = 0, 1, . . . , ns−1, the digital image at the s-th scale

with I0 denoting the original image. All images are in
grayscale.

• xsi = [u, v]T, the i-th pixel in Is, with (u, v) being image
coordinates.

• Cs, the pixel set for the candidate cracks in Is.
• C∗, the detected crack pixel set as the algorithm output.

C. Problem Definition

Our ultimate goal is to extract all cracks from an input
pavement image by multi-scale crack fusion, as shown in
Fig. 1. Thus, our crack detection problem is defined as follows,

Definition 1 (Crack detection): Given I0, generate multi-
scale images Is, s = 0, 1, . . . , ns − 1, extract the candidate
cracks Cs from each Is, then fuse Cs to obtain C∗.

IV. MULTI-SCALE PAVEMENT CRACK DETECTION

Cracks in the image tend to have one or more particular
salient scales. To combine the strengths of small and large
scales, we propose a three-step multi-scale crack detection
algorithm as illustrated in Fig. 1. First, we generate the multi-
scale images by Gaussian blurring with different kernel sizes.
Second, we find the candidate cracks at each scale by utilizing

crack seed

(a) (b) (c) (d) (e) (f)

Fig. 2. An illustration of windowed minimal intensity path based crack detection method. (a) Original pavement image. (b) Crack seed extraction results. (c)
Crack seed clustering and filtering illustration. (d) WMIP generation result. (e) Path verification results. (f) Crack region detection by path growing.

a windowed minimal intensity path selection based method.
Finally, we determine the cracks correspondence across dif-
ferent scales and propose a statistical crack evaluation model
to compute the average score of each crack at different scales
for crack fusion.

A. Multi-Scale Images Generation
Using Gaussian blurring technique in computer vision [24],

the image at the s-th scale level, Is, can be produced from the
convolution of a variable-scale Gaussian, G(u, v, σs), with an
input image I0.

G(u, v, σs) =
1

2πσ2
s

e−(u
2+v2)/2σ2

s . (1)

Thus, a set of images with different scales are obtained with
different σs, which serve as the input to the following steps.

B. Candidate Crack Extraction at Each Scale
As shown in Fig. 2, we propose a Windowed Minimal

Intensity Path (WMIP) method to find candidate cracks at each
scale.

1) Crack seed extraction (Fig. 2(b)): Let g(x) be the
intensity value of pixel x, and Te be a threshold. We divide
the whole image Is into grid cells, denoted as Y si , i =
1, 2, . . . , ny . Each cell is a set of m×m pixels. In each grid
cell Y si , we select a pixel xsi as crack seed when the following
two conditions are satisfied: 1) xsi is the darkest pixel in Y si ,
and 2) xsi is within the top Te percent darkest pixels in Is.

xsi =argmin
x

g(x),

s.t. x ∈ Y si , g(x) < ge,
(2)

where ge is the pixel intensity value of the top Te percent
darkest pixels in Is.

The choice of Te is important. A bigger Te leads to
more extracted seeds which increase computation load in the
following steps. On the other hand, decreasing values of Te
may remove true crack pixels. Our empirical results show
that a Te value of 0.2% reaches a good balance between the
computation load and the resulting false negative rate. As the
output of the step, let us denote Es as the set of crack seeds.

2) Crack seed clustering and filtering (see Fig. 2(c)): With
Es obtained, we use DBSCAN algorithm [25] to group crack
seeds into clusters, meanwhile, find the isolated crack seeds
that need to be removed.

Denote the generated clusters as Gn, n = 1, 2, . . . , nc. This
clustering step can help us reduce the searching region while
finding the WMIP between crack seeds in the following step.

(a) Quadrant definition in crack seed cluster

u

v

s
ix

(b) WMIP generation

s
ixnG ,

s
i jW

s
jx

s
jx

s
ax

s
bx

s
cx

Fig. 3. WMIP generation.

3) WMIP generation (Fig. 2(d)): For each crack seed xsi ,
we define Ds

i be the set of crack seeds which need to be
connected with xsi . We first find Ds

i and then employ a WMIP
based method to connect xsi with each crack seed in Ds

i .
To determine Ds

i , we define the local coordinate system of
xsi at first, with xsi as the origin and two axes parallel with
the two axes of Is, respectively, as shown in Fig. 3(a). Denote
q(xsi ,x

s
j) as the quadrant number of xsj in xsi ’s local coordinate

system.

q(xsi ,x
s
j) =


1, uj − ui ≥ 0 and vj − vi > 0,

2, uj − ui < 0 and vj − vi ≥ 0,

3, uj − ui ≤ 0 and vj − vi < 0,

4, uj − ui > 0 and vj − vi ≤ 0.

(3)

where (ui, vi) and (uj , vj) are the image coordinates of xsi
and xsj , respectively.

For crack seed xsi , we connect it with another crack seed xsj
if 1) they are in the same cluster, 2) their geometric distance
is smaller than the threshold Tp, and 3) xsj is the nearest
crack pixel to xsi in its own quadrant, which means each
crack seed can be connected with 4 other crack seeds at most.
Summarizing the conditions, for each crack seed xsi ∈ Gn,
we can write Ds

i as,

Ds
i :=

{
xsj

∣∣∣xsj ∈ Gn, ‖xsi − xsj‖ < Tp, ‖xsi − xsj‖ ≤ ‖xsi − xsm‖,

∀xsm ∈ Gn, q(xsi ,xsj) = q(xsi ,x
s
m)
}
.

(4)
An example is shown in Fig. 3(a), where xsi is con-

nected with three crack seeds: xsj , x
s
a and xsb . Thus, Ds

i =
{xsj ,xsa,xsb}. We do not connect xsi and xsc because their
distance is bigger than Tp.

For xsi and each crack seed xsj ∈ Ds
i , we use WMIP

to connect them. We consider an image as a bidirectional
weighted graph of pixels. Pixels are vertices. If and only if
two pixels xsa and xsb are adjacent in the image, we build a
bidirectional edge between them, denoted as (xsa,x

s
b). Recall

the pixel intensity value of x is g(x). The edge weight from
vertex xsa to xsb is g(xsb), while edge weight from xsb to xsa is
g(xsa). g(x

s
a) and g(xsb) are often not the same value.

We denote P si,j as a path connecting xsi and xsj in the form
of a sequence of pixels,

P si,j := {xsi ,xsk,xsk+1, . . . ,x
s
k+n,x

s
j}, (5)

such that ||xsi −xsk|| = ||xsk+n−xsj || = ||xsk+m−xsk+m+1|| =
1, for m = 0, 1, . . . , n− 1 because they are adjacent pixels.

We also define Psi,j := {P si,j |P si,j ⊆ W s
i,j} as a set of

all possible paths in the window set W s
i,j where W s

i,j is the
rectangular window with xsi = [ui, vi]

T and xsj = [uj , vj]
T as

the two opposite vertices,

W s
i,j :=

{
xsb

∣∣∣min(ui, uj) ≤ ub ≤ max(ui, uj),

min(vi, vj) ≤ vb ≤ max(vi, vj)
}
.

(6)

For each pair of crack seeds xsi and xsj ∈ Ds
i , the WMIP is

the path minimizing the sum of the intensities of pixels along
path (see Fig. 3(b)). Let P si,j be the WMIP, then

P si,j = argmin
P∈Psi,j

∑
xsa∈P

g(xsa), (7)

where xsa represents a pixel in a candidate path P . We apply
Dijkstra algorithm [26] to solve the optimization problem in
(7). Finally, we obtain the set of WMIPs, denoted as Ps, for
all (i, j) pairs.

4) Path verification (Fig. 2(e)): Not all WMIPs in Ps
represent real cracks. To remove false WMIPs from Ps, a ver-
ification step is performed by calculating the mean intensity,
m(P si,j), of each P si,j ∈ Ps,

m(P si,j) =

∑
xsa∈P si,j

g(xsa)

|P si,j |
, (8)

where set cardinality operator | · | counts the number of pixels.
If the mean intensity of a WMIP is bigger than a given
threshold, gm, we consider the case as false-positive detection
and discard the WMIP. Threshold gm is set as the intensity
value of the top Tv percent darkest pixels in Is.

5) Crack region detection by path growing (Fig. 2(f)):
The previous steps may miss some outside pixels due to
its focus on connectivity. This step is to absorb neighbor-
ing dark pixels to grow paths. The neighboring relationship
is not limited to adjacent pixels, two pixels with distance
smaller than a threshold are considered as neighbors. Define
L(xsi) := {xsj |g(xsj) < g(xsi)} be the set of pixels whose
intensities are less than g(xsi), κ be the total amount of pixels
in Is, Csi be the i-th pixel set for the candidate crack in Is.

Initially, we set Csi = P si,j . Denote Gsi as the new found crack
pixel set which is generated from Csi . Gsi can be computed as

Gsi :=

{
xsa

∣∣∣‖xsa − xsb‖ < r,xsb ∈ Csi ,
|L(xsa)|
κ

< Tr

}
, (9)

where r is the distance tolerance for path growing, Tr is a
threshold. After obtaining Gsi from Csi , we add Gsi into Csi .

Csi = Csi ∪ Gsi . (10)

This aggregation process is repeatedly performed, until there
are no further pixels to add.

6) Crack region grouping: One real crack may correspond
to several crack regions in the image due to noise. We
want to group the detected crack regions according to their
geometric distances between each other. The distance between
two candidate crack pixel sets, Csi and Csj , can be computed
as

di,j = min‖xsa − xsb‖, s.t. xsa ∈ Csi ,xsb ∈ Csj . (11)

For a given threshold Tg , if di,j < Tg is satisfied, this pair of
crack regions, Csi and Csj , are labeled as the same group. All
crack regions may be divided into several groups. For brevity,
we use “one crack” to represent a crack group in the rest of
this paper.

7) Small crack removal: If a crack size (total pixel number)
is smaller than a threshold Ts, the crack is regarded as noises
and discarded.

After detecting candidate cracks at each scale, we are ready
for multi-scale fusion.

C. Crack Correspondences Matching

Now let us find the crack correspondences across different
scales. If two cracks at different scales correspond to the same
real crack, they are called as a pair of crack correspondence.
The problem of crack matching is defined as follows.

Definition 2 (Crack matching): Given Csi and Csj , for each
Csii ⊆ Csi and Csjj ⊆ Csj , find Csim ⊆ Csii and Csjn ⊆ C

sj
j ,

such that Csim corresponds to Csjn .
Then, for each Csii ⊆ Csi and C

sj
j ⊆ Csj , we find the

overlapping region with a distance tolerance as the matched
segments between Csii and C

sj
j . Let us define the distance

from the pixel xsjb to crack Csii as d(xsjb , C
si
i),

d(x
sj
b , C

si
i) = min ‖xsjb − xsia ‖, s.t. xsia ∈ C

si
i . (12)

We want to find the overlapping region of Csii and C
sj
j

within a distance tolerance as their correspondence. Initially,
we set Csim = C

sj
n = ∅. Then, for each pixel xsjb ∈ C

sj
j , if the

criteria, d(xsjb , C
si
i) < Td, is satisfied, we add x

sj
b into C

sj
n ,

where Td is a threshold. Similarly, for each point xsia ∈ C
si
i ,

if d(xsia , C
sj
j) < Td is satisfied, add xsia into Csim . When Csim

and C
sj
n are unchanged, we obtain the correspondence Csim

and Csjn .
The steps above are applied for each pair of cracks at

different scales until all crack correspondences are found.
In the rest of the paper, we renumber all cracks at each
scale so that cracks with the same subscript are a group of
correspondences.

(a) Original image (b) Score

Fig. 4. An example output of score computation. (Best viewed in color).

D. Crack Selection and Verification by Multi-Scale Fusion

The key issue here is how to optimally integrate all candi-
date cracks Cs to obtain C∗. First, we design the model of
average score to evaluate the probability of each detected crack
from a true crack. Then, we develop statistical hypothesis test
to remove false-positive cracks.

We propose a metric/scoring mechanism to evaluate a
pixel’s probability to be a crack pixel. A dark pixel or a pixel
with many dark neighboring pixels has higher probability to
be a crack pixel than otherwise. Thus, the score for each
pixel is defined as the aggregation between itself and from
all neighboring pixels. We model the probability distribution
of each crack pixel to be a weighted Gaussian function. The
score of a pixel, xsa which is defined as s(xsa),

s(xsa) =
∑

xsb∈Ne(xsa)

wb ×
1

2πσ2
p

e
− (ua−ub)

2+(va−vb)
2

2σ2p , (13)

where σp is the standard deviation of the Gaussian distribution,
Ne(x

s
a) is the neighboring window with the size of (3σp+1)×

(3σp + 1) centering as xsa, and wb is a weight. We adopt the
intensity weight in the score computation. A pixel’s intensity
weight is inversely proportional to its intensity value, i.e., a
pixel with a lower intensity is given a greater intensity weight,

wb = 1− |L(x
s
b)|

κ
. (14)

Fig. 4 illustrates an example of score distribution where we
can see that the crack pixel has a larger score at this scale.

With the score of pixel defined, we can compute the average
score of crack Csi as follows,

ρ(Csi) =

∑
xsa∈Csi

s(xsa)

|Csi |
. (15)

With crack’s average score defined, we perform statistical
hypothesis test to remove false-positive cracks. From (13)
and (15), we know that ρ(Csi) ∼ N(µs, σ

2
s) is a random

variable following Gaussian distribution with mean being µs
and variance being σ2

s . Hence (ρ(Csi)− µs)/σs ∼ N(0, 1) is
a random variable following the normal distribution with zero

mean and unit variance. Define Ci be the union pixel set of
the i-th matched cracks across all scales, thus

Ci =
ns−1⋃
s=0

Csi . (16)

We define function f(Ci) to evaluate the probability of Ci
to be a real crack or not.

f(Ci) =
ns−1∑
s=0

(
ρ(Csi)− µs

σs
)2. (17)

For each candidate crack Ci, we set up two hypotheses:

H0 : Ci is a crack.
H1 : Ci is not a crack.

Since f(Ci) is the sum of squares of multiple normal
distributions according to (17), f(Ci) follows χ2 distribution
with ns degrees of freedom. Define F (x, ns) be the cumulative
distribution function of χ2 distribution with ns degrees of
freedom, the probability of a value from χ2 distribution larger
than x is

P{f(Ci) ≥ x} = 1− F (x, ns). (18)

By setting the significance level as α, we can obtain

P{f(Ci) ≥ x} = α. (19)

Since the function F is continuous and strictly monotoni-
cally increasing, combining (18) and (19), we can obtain

x = F−1(1− α, ns), (20)

where F−1(·) is the inverse function of F (·). Thus, we reject
H0 if

f(Ci) ≤ F−1(1− α, ns). (21)

After the statistical hypothesis test, we remove the false-
positive cracks. Combine all the cracks remained to obtain
C∗.

V. ALGORITHM ANALYSIS

We summarize the proposed WMIP based candidate crack
detection method in Algorithm 1 to facilitate our analysis.

Recall κ is the total amount of pixels in Is. For crack seed
extraction, since at most κ/m2 cells are obtained, with each
cell containing m2 pixels, the crack seeds can be detected in
O(κ/m2 × m2) = O(κ) time. Crack seed clustering takes
O(|Es| log |Es|) [25]. Obviously, |Es| ≤ κ/m2 ≤ κ, thus,
crack seed cluster has a time complexity O(κ log κ). Since
we only find the WMIP within a rectangular window W s

i,j

whose diagonal length is smaller than Tp, the maximum size
of W s

i,j is 1
2T

2
p , thus, when proceeding the Dijkstra algorithm,

the number of vertex is smaller than 1
2T

2
p , and the number

of edges is no more than 4T 2
p . So the time complexity of

each WMIP generation is O(T 2
p log Tp). There are at most

κ2/m4 paths in all because |Es| ≤ κ/m2. Thus, the time
complexity for all WMIPs generation is

T 2
p log Tp
m4 κ2. Since

the length of P si,j is no more than the size of W s
i,j , we have

|P si,j | ≤ 1
2T

2
p . Therefore, we can compute m(P si,j) in O(T 2

p)

time. Crack region detection by path growing takes O(κ log κ)
time. Computing di,j between two sets with size |Csi | and |Csj |
needs O(|Csi ||Csj |) time. Usually, the total number of crack
regions is very small and can be considered as constant. Thus,
the time complexity of crack grouping is also O(|Csi ||Csj |). To
summarize, since |Csi ||Csj | < κ2, the most computationally
expensive step in Algorithm 1 is WMIP generation using
Dijkstra algorithm. Thus, the computational complexity of our
WMIP based crack detection algorithm is O(

T 2
p log Tp
m4 κ2).

Theorem 1: The computational complexity of the proposed
WMIP based crack detection algorithm is O(

T 2
p log Tp
m4 κ2).

Algorithm 1: WMIP based Crack Detection
input : Is
output: Cs

1 Detect all crack seeds from Is to generate Es; O(κ)
2 Cluster and filter Es using DBSCAN; O(κ log κ)

3 foreach xsi ∈ Es and xsj ∈ Es do O(
T 2
p log Tp
m4 κ2)

4 if xsj ∈ Ds
i then

5 Compute P si,j by solving (7) using Dijkstra
algorithm; O(T 2

p log Tp)

6 Compute mean intensity m(P si,j) using (8); O(T 2
p)

7 if m(P si,j) < gm then
8 Discard P si,j ; O(1)

9 foreach P si,j ∈ Ps do O(κ log κ)
10 repeat O(κ log κ)
11 Compute Gsi using (9); O(ni)
12 Csi = Csi ∪ Gsi ; O(1)
13 until Csi is unchanged;

14 foreach Csi and Csj do O(|Csi ||Csj |)
15 Compute di,j using (11); O(|Csi ||Csj |)
16 if di,j < Tg then
17 Merge Csi and Csj into the same group;

O(|Csi |+ |Csj |)

18 foreach Csi ∈ Cs do O(|Csi |)
19 if |Csi | < Ts then
20 Remove Csi from Cs; O(|Csi |)

21 return Cs; O(1)

We present our MFCD algorithm in Algorithm 2, and
facilitate the computational complexity analysis as follows.
Matching two cracks Csii and Csjj takes in O(|Csii ||C

sj
j |) time.

Generally, the total number of cracks in Is is small and can
be considered as constant. Thus, crack matching across two
scales has a time complexity O(|Csii ||C

sj
j |). Computing all

crack correspondences across each pair of adjacent scales takes
O(ns|Csii ||C

sj
j |) time. When computing the average score

of any crack Csi , the scores of |Csi | pixels in Csi need to
be calculated firstly, as shown in Eq. (15). The neighboring
window for each pixel is (3σp+1)×(3σp+1). Thus, the overall
computation of average score of Csi takes O((3σp +1)2|Csi |)

time. Considering σp is a constant, computing ρ(Csi) has a
time complexity O(|Csi |). Since the total number of crack
pixels in each Is is smaller than κ, merging cracks across
ns scales takes in O(nsκ) time. Define the total number
of Ci be n. Considering |Ci| ≤ κ, the time complexity of
hypothesis test for all merged cracks is O(nκ). Thus, the
crack selection and verification for each two scales takes
in O(max(nsii , n

sj
j)) time. Since both |Csi | and n are much

smaller than κ, the computational complexity of our MFCD
algorithm is O(ns

T 2
p log Tp
m4 κ2).

Theorem 2: Our MFCD algorithm runs in O(ns
T 2
p log Tp
m4 κ2)

time.

Algorithm 2: MFCD Algorithm
input : Is, s = 0, 1, . . . , ns − 1
output: C∗

1 foreach Is do O(ns
T 2
p log Tp
m4 κ2)

2 Extract Cs using WMIP algorithm; O(
T 2
p log Tp
m4 κ2)

3 foreach Csi and Csj do O(ns|Csii ||C
sj
j |)

4 foreach Csii ⊆ Csi and Csjj ⊆ Csj do O(|Csii ||C
sj
j |)

5 Match Csii and Csjj ; O(|Csii ||C
sj
j |)

6 foreach Cs do O(ns|Csi |)
7 foreach Csi ⊆ Cs do O(|Csi |)
8 Compute ρ(Csi) using (15); O(|Csi |)

9 Merge matched cracks using (16); O(nsκ)
10 foreach Ci do O(nκ)
11 Compute f(Ci) using (17); O(ns)
12 if f(Ci) ≥ F−1(1− α, ns) then
13 Add Ci into C∗; O(|Ci|)

14 return C∗; O(1)

VI. EXPERIMENTS

We have implemented our algorithm using MATLAB under
a PC with an operating system of Windows 8, which has
an Intel(R) CoreTM2 i5-4200U CPU@1.60GHz and 4 GB
memory. We evaluate the performance of our MFCD method
on two public datasets and compare it with six state-of-the-art
algorithms.

A. Parameter Settings

It is important to determine the values of σs in multi-scale
image generation in Section IV-A. We have to find a trade-off
between efficiency and completeness. Define σs = kσ, k ∈ N.
First, we fix σ = 1, and can adjust the number of scales from 1
to 5. By setting k = 0, 1, . . . , n, we obtain n+1 images with
different scales. We select 10 representative images for the
experiments. We find that when the number of scales exceeds
3, the detected cracks are almost unchanged. However, the cost
of computation increases with this number. Therefore, we use
3 scale images. Then, by fixing k = 0, 1, 2, we find σ = 0.8

TABLE I
PARAMETER SETTING

Parameter Value Description

σs 0.8,1.6 standard deviation of Gaussian kernel
m 8 size of grid cell
Te 0.2% threshold for crack seed extraction
Tp 32 threshold for path generation
Tv 1% threshold for path verification
Tr 2% threshold for path growing
r 4 distance tolerance for path growing
Tg 64 threshold for crack region grouping
Ts 64 threshold for small crack remove
Td 8 distance tolerance for crack matching
σp 1 standard deviation in pixel score computation
α 0.05 significance level

experimentally to be the best choice. Thus, the 3 scale images
are the original image, σs = 0.8, and σs = 1.6.

Referring to [27], the size of grid cell, m, is set as 8. Other
parameters are set according to the experiments empirically as
shown in Tab. I.

B. Datasets, Counterparts, and Metrics

Two public datasets are tested in our experiments.
• AigleRN dataset [17]. It contains 38 French pavement

images with ground truth. The resolution is 991 × 462
pixels. They have been pre-processed to mitigate the
influence of non-uniform lighting conditions.

• CFD dataset [12]. It is composed of 118 images with
a resolution of 480 × 320 pixels, which can generally
represent urban road surface conditions in Beijing, China.
Each image has hand labeled ground truth. The images
contain noises such as shadows, oil spots, and water
stains.

The six existing methods which we compare our algorithm
to are:
• Canny [28]. Canny is a traditional edge detection method.
• MS [18]. Markov Segmentation (MS) is a crack detection

method based on a multi-scale extraction and a Markov
segmentation.

• GC [29]. GC is a geodesic contour method with automatic
selection of points of interest based on auto-correlation.

• FFA [30]. Free Form Anisotropy (FFA) is based on the
estimation of minimal intensity paths at each pixel in four
directions, and the pixel is recognized as a crack if the
path cost greatly varies with the direction.

• MPS [17]. Minimal Path Selection (MPS) is a crack de-
tection algorithm based on the original minimal intensity
path selection.

• CrackForest [12]. CrackForest is a road crack detection
framework based on random structured forests, by learn-
ing the inherent structured information of cracks.

To evaluate the performance of different crack detection
algorithms quantitatively, three metrics, including Precision,

Recall and F1-measure, are employed. These three metrics
can be computed based on true positive (TP), false negative
(FN), and false positive (FP),

Precision =
TP

TP+FP
(22)

Recall =
TP

TP+FN
(23)

F1-measure = 2× Precision× Recall
Precision + Recall

(24)

Since acquiring a high quality ground truth is difficult for
real images, we allow a tolerance margin in measuring the
coincidence between the detected cracks and the ground truth.
As comparisons, according to the experiment settings in [17]
and [12], we assume that TP pixels are included within a 2
and 5 pixel vicinity of the ground truth on AigleRN and CFD,
respectively.

C. Computation Speed Test

To validate the computation complexity analysis in theorem
2, we perform the speed test on our MFCD algorithm. Ac-
cording to theorem 2, the computation complexity of MFCD
algorithm is related to four parameters: ns, κ, m and Tp. We
test the speed of MFCD algorithm with different settings of
the four parameters. Each time, We fix three parameters of
them and change the remaining one to see the trend of run
time. The results are shown in Fig. 5, where for each setting,
10 pavement images from CFD dataset are carried out for
averaged performance. From Fig. 5 we can see that these
timing results are consistent with the theoretical analysis in
general.

0 1 2 3 4 5 6
n

s

0

5

10

15

20

25

30

35

40

45

ru
n

tim
e(

s)

(a)

1 1.5 2 2.5 3 3.5 4 4.5
5 #105

0

50

100

150

200

ru
n

tim
e(

s)

(b)

0 5 10 15 20 25 30
m

0

5

10

15

20

ru
n

tim
e(

s)

(c)

0 10 20 30 40 50 60
T

p

0

5

10

15

20

25

30

ru
n

tim
e(

s)

(d)

Fig. 5. Computation speed test results of our MFCD algorithm. Each data
point in this figure is an average of results from ten pavement images.

D. Results on AigleRN Dataset

Fig. 6 illustrates two typical sample detections on AigleRN.
The final detection results (row 5) are obtained by fusing the

Fig. 6. Representative sample results of crack detection using our proposed
method. The first row lists the original images, rows 2-4 are detection results
from scale 1-3, the last row is the final detection results.

results from different scales (row 2-4). It is clear that multi-
scale fusion improves the overall performance.

0 5 10 15 20 25 30 35 40

Image No.

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Precision
Recall
F1-measure

Fig. 7. Crack detection results of our proposed MFCD algorithm on AigleRN
dataset.

The crack detection result of our algorithm is shown in
Fig. 7. The summary statistics for comparisons are presented in
Fig. 8, and representative sample results are shown in Fig. 9. It
is clear that our MFCD method outperforms the counterparts.

Canny MS GC FFA MPS WMIP MFCD

Method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Precision
Recall
F1-measure

Fig. 8. Averaged values of Precision, Recall, and F1-measure for all the
images in AigleRN. The values of MS, GC, FFA, MPS are from reference
[17]. Here, WMIP indicates WMIP based crack detection method on I0.

TABLE II
CRACK DETECTION RESULTS EVALUATION ON CFD DATASET

Method Precision Recall F1-measure

Canny 12.23% 22.15% 15.76%
FFA 78.56% 68.43% 73.15%

CrackForest 82.28% 89.44% 85.71%
MFCD 89.90% 89.47% 88.04%

Traditional edge detection method Canny is not suitable for
pavement crack detection due to its overly high sensitivity.
MS is too sensitive to the background texture. GC can only
find a small part of cracks. FFA outputs the results as a thicker
line, implying high FP rate. As for MPS, for the image with
serious noise, the values of FP and FN become an issue.

Furthermore, to validate whether the multi-scale fusion can
improve crack detection, we compare the single scale crack
detection result on I0 with MFCD method. It is clear that the
multi-scale fusion indeed improves the performance of single-
scale detections.

E. Results on CFD Dataset

Our algorithm also succeeds on CFD dataset. Fig. 10
presents some representative images and their detection results
using our MFCD algorithm, where we can see that the images
in CFD are quite noisy. The performance of our MFCD
algorithm degrades when the contrast between cracks and
backgrounds is low (as shown in the 2nd row in Fig. 10), or
there are dark regions, e.g. oil spots, in the pavement images
(as shown in the 5th and 9th rows in Fig. 10). The crack
detection results on the CFD dataset are summarized in Tab. II
where the results of Canny, FFA and CrackForest are from
[12]. Again, our algorithm outperforms all counterparts.

Fig. 9. Example results of different algorithms on AiGleRN (from left to right: original image, ground truth, Canny, MS, GC, FFA, MPS, WMIP based
method on I0, and MFCD).

The whole set of original images and detection results are
available on the following web page: http://telerobot.cs.tamu.
edu/bridge/Datasets.html.

VII. CONCLUSION AND FUTURE WORK

We developed a new MFCD method for detecting the cracks
from pavement images. First, we proposed a WMIP based
method to detect the cracks at each single scale. Second,
we matched the corresponding cracks across different scales.
Finally, a crack evaluation model was built, and the crack was
selected as the detected crack if it passed statistical hypothesis
test. Our MFCD algorithm takes in O(ns

T 2
p log Tp
m4 κ2) time. We

have implemented the proposed algorithm and experimental
results are consistent with our complexity analysis. We tested
MFCD algorithm on two public datasets. Experimental results
showed that 1) The proposed MFCD algorithm improves the
crack detection performance compared with the single scale
WMIP based method. 2) Our MFCD algorithm outperforms
six existing methods.

In the future, we will consider fusing the camera inputs with
ground penetration radar and laser ranger finder inputs. We
will study how to perform crack detection using multi-modal
inputs.

ACKNOWLEDGMENT

We would like to thank Guimu Robot Co. Ltd. for their
feedback. We are also grateful to C. Chou, H. Cheng, S. Yeh,
A. Kingery, A. Angert, T. Sun, D. Wang, Y. Sun, Y. Yu, J.
Gong, and M. Momin for their inputs and contributions to the
Networked Robots Laboratory at Texas A&M University.

REFERENCES

[1] H. La, R. Lim, B. Basily, et al., “Mechatronic systems design for an
autonomous robotic system for high-efficiency bridge deck inspection and
evaluation,” IEEE/ASME Trans. on Mechatronics, vol. 18, no. 6, pp.1655-
1664, Dec. 2013.

[2] H. La, R. Lim, B. Basily, et al., “Autonomous robotic system for high-
efficiency non-destructive bridge deck inspection and evaluation,” in Proc.
Int. Conf. on Automation Science and Engineering., 2013, pp. 1065-1070.

[3] H. La, N.Gucunski, S. Kee, and L. Nguyen, “Data analysis and visu-
alization for the bridge deck inspection and evaluation robotic system,”
Springer Journal of Visualization in Engineering, no. 3:6, pp.1-16, Feb.
2015.

[4] Y. Hu, and C. Zhao, “Alocal binary pattern based methods for pavement
crack detection,” Journal of Pattern Recognition Research, vol. 5, no. 1,
pp.140-147, Sep. 2010.

[5] J. Tang, and Y. Gu, “Automatic crack detection and segmentation using
a hybrid algorithm for road distress analysis,” in Proc. IEEE Int. Conf.
Syst., Man, Cybern., 2013, pp. 3026-3030.

[6] R. Lim, H. La, W. Sheng, and Z. Shan, “Developing a crack inspection
robot for bridge maintenance,” in IEEE International Conference on
Robotics and Automation., 2011, pp. 6288-6293.

Fig. 10. Some experimental results using our MFCD algorithm on CFD
dataset (from left to right: original image, ground truth, and results from
MFCD).

[7] R. Lim, M. Hung, and W. Sheng, “A robotic crack inspection and mapping
system for bridge deck maintenance,” IEEE Transactions on Automation
Science and Engineering, vol. 11, no. 2, pp.367-378, April 2014.

[8] H. Oliveira, and P. L. Correia, “Automatic road crack detection and char-
acterization,” IEEE Transactions on Intelligent Transportation Systems,

vol. 14, no. 1, pp.155-168, March 2013.
[9] Y. Hu, C. Zhao, and H. Wang, “Automatic pavement crack detection

using texture and shape descriptors,” IETE Technical Review, vol. 27, no.
5, pp.398-405, Sep. 2010.

[10] M. Jahanshahi, S. Masri, C. Padgett, and G. Sukhatme, “An innovative
methodology for detection and quantification of cracks through incorpo-
ration of depth perception,” Machine Vision Application, vol. 24, no. 2,
pp.227-241, 2013.

[11] P. Prasanna, K. J. Dana, N. Gucunski, et al. ,“Automatic crack detection
on concrete bridges,” IEEE Transactions on Automation Science and
Engineering, vol. 13, no. 2, pp.591-599, April 2016.

[12] Y. Shi, L. Cui, Z. Qi, F. Meng,and Z. Chen, “Automatic road crack de-
tection using random structured forests,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 12, pp.3434-3445, Dec. 2016.

[13] A. Cord, and S. Chambon, “Automatic road defect detection by textural
pattern recognition based on AdaBoost,” Computer-Aided Civil Infras-
tructure Engineering, vol. 27, no. 4, pp.244-249, April 2011.

[14] B. Lee, Y. Kim, S. Yi, and J. Kim, “Automated image processing
technique for detecting and analyzing concrete surface cracks,” Structure
Infrastructure Engineering, vol. 9, no. 6, pp.567-577, 2013.

[15] H. La, N. Gucunski, K. Dana, and S. Kee, “Development of an
autonomous bridge deck inspection robotic system,” Journal of Field
Robotics, in press, Apr. 2017.

[16] D. Zhang, Q. Li, Y. Chen, et al., “An efficient and reliable coarse-to-
fine approach for asphalt pavement crack detection,” Image and Vision
Computing, vol. 2017, no. 57, pp.130-146, 2017.

[17] R. Amhaz, S. Chambon, J. Idier, and V. Baltazart, “Automatic crack
detection on two-dimensional pavement images: an algorithm based on
minimal path selection,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 10, pp.2718-2729, Oct. 2016.

[18] S. Chambon, and J. M. Moliard, “Automatic road pavement assessment
with image processing: Review and comparison,” International Journal
of Geophysics, vol. 2011, pp.1-20, 2011.

[19] M. Gavilan, D. Balcones, O. Marcos, et al., “Adaptive road crack
detection system by pavement classification,” Sensors, vol. 11, no. 10,
pp.9628-9657, Oct. 2011.

[20] V. Kaul, A. Yezzi, and Y. Tsai, “Detecting curves with unknown end-
points and arbitrary topology using minimal paths,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp.1952-1965,
Oct. 2012.

[21] Y. Jeon, J. Yun, D. Choi, and S. Kim, “Defect Detection algorithm for
corner cracks in steel billet using discrete wavelet transform,” in Proc.
Int. Conf. Control, Autom., Syst., 2009, pp. 2769-2773.

[22] R. G. Lins, and S. N. Givigi, “Automatic crack detection and measure-
ment based on image analysis,” IEEE Transactions on Instrumentation
and Measurement, vol. 65, no. 3, pp.583-590, March 2016.

[23] L. Ying, and E. Salari, “Beamlet transform-based technique for pavement
crack detection and classification,” Computer-Aided Civil and Infrastruc-
ture Engineering, vol. 25, no. 8, pp.572-580,Nov. 2010.

[24] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing
(4th Edition). London, U.K.: Pearson, 2017.

[25] M. Ester, H. P. Kriegel, J. Sander, et al, “A density-based algorithm for
discovering clusters in large spatial databases with noise”, Kdd, vol. 96,
no. 34, pp. 226-231, 1996.

[26] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp.269-271, 1959.

[27] Y. Huang, and B. Xu, “Automatic inspection of pavement cracking
distress,” Journal of Electronic Imaging, vol. 15, no. 1, pp.1-6, Mar. 2006.

[28] J. Canny, “A computational approach to edge detection,” IEEE Trans.
on Pattern Anal. Mach. Intell., no. 6, pp.679-698, 1986.

[29] S. Chambon, “Detection of points of interest for geodesic contours:
Application on road images for crack detection,” in Proc. Int. Conf.
Comput. VISAPP, 2011, pp. 1-4.

[30] T. S. Nguyen, S. Begot, F. Duculty, and M. Avila, “Free-form anisotropy:
A new method for crack detection on pavement surface images,” in Proc.
Int. Conf. Image Process., 2011, pp. 1069-1072.

Haifeng Li received the Ph.D. degree in control the-
ory and control engineering from Nankai University,
Tianjin, China, in 2012.

He is an associate professor with Department of
Computer Science and Technology, Civil Aviation
University of China, Tianjin, China. He has authored
or coauthored over 30 technical articles. His research
interests include computer vision, image processing,
robotic sensing, multisensor fusion, robot localiza-
tion and navigation.

Dezhen Song (S’02-M’04-SM’09) received the
Ph.D. degree in industrial engineering from Univer-
sity of California, Berkeley, CA, US, in 2004.

He is a Professor with Department of Computer
Science and Engineering, Texas A&M University,
College Station, TX, USA. His research interests in-
clude networked robotics, distributed sensing, com-
puter vision, surveillance, and stochastic modeling.

Dr. Song received the Kayamori Best Paper Award
of the 2005 IEEE International Conference on
Robotics and Automation (with J. Yi and S. Ding).

He received NSF Faculty Early Career Development (CAREER) Award in
2007. From 2008 to 2012, Song was an associate editor of IEEE Transactions
on Robotics. From 2010 to 2014, Song was an Associate Editor of IEEE
Transactions on Automation Science and Engineering. He is currently a Senior
Editor for IEEE Robotics and Automation Letters (RA-L), a new flagship
journal from IEEE Robotics and Automation Society. He is also an author
and a Multimedia Editor for Springer Handbook for Robotics.

Yu Liu received the B.S. degree from the Depart-
ment of Computer Science and Technology from
Taiyuan University of Technology, Taiyuan, China,
in 2015. He is currently working toward the Master
degree in computer science and technology with
Civil Aviation University of China, Tianjin, China.

His current research interests include the areas of
computer vision, image processing and understand-
ing.

Binbin Li received the B.S. degree from the De-
partment of Electrical Engineering and Automation
from Harbin Institute of Technology, Harbin, China,
in 2012. He is currently working toward the Ph.D.
degree in computer engineering with Texas A&M
University, College Station, TX, USA.

His current research interests include the areas of
robot vision, visual tracking and recognition.

