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Abstract— We report a method for the detection and recog- method for constructing refractive and specular 3D objects
nition of a large planar mirror based on the images captured jn which the light source must move along the light ray while
by a monocular camera. We start with deriving a mirror frans-  1ha camera captures two consecutive images of the reflected

formation matrix in a homogeneous coordinate and geometric liaht. Polarization i - 81-[11] is oft di .
constraints for corresponding real and virtual feature points 19Nt Polarization imaging [8]-{11] is often used in mirro

in the image. We find that existing feature detection methods OF reflective surface detection. _

are not reflection invariant. We introduce a secondary artificial Following a minimalist's design, our robot only carries a
reflection to virtual features to generate secondary features single monocular camera and needs to recognize planes of
which are proven to share a rigid body motion relationship |5rqe mirrored walls. We first derive a geometric constraint

with the original feature set. We propose an iterative strategy . . .
to adjust the secondary mirror configuration so that existing that relates the feature points of real objects to their cefle

feature matching methods can be used. The combined method tions in the image, which are named as real-virtual pairs. We
yields a robust mirror detection algorithm which has been also find that existing advanced feature detection methods

verified in physical experiments. such as scale invariant feature transformation (SIFT) are
not reflection invariant which leads to a high false negative
. INTRODUCTION rate in matching real-virtual pairs. To address the problem

Mirrors are common objects in indoor environments an#/e introduce a secondary artificial mirror reflection which
challenge robots in navigation. Cameras or light detectiofPnverts virtual features into secondary features thatesaa
and ranging (LIDAR) cannot recognize mirrors because lighHigid body motion relationship with the original featurd@e
simply bounces off the mirror surface. As service robot§roposed method has been verified in physical experiments.
perform more and more tasks in indoor environments, the Il. PROBLEM DEEINITION
ability to recognize mirrors is necessary.

The ability of detecting a mirror or its own reflection
in a mirror is a widely adopted test for intelligence levels - . . :
[1]. Gallup first studies the self-directed behavior of aalisn planar mirror, some objects and their reflections.
using mirror-introduced tests [2]. A mirror and mark test 2) Al .camera pargmeters are k.nown.
is the frequently used method with the following setup: ATNere exist two coordinate frames in our system. Camera co-
subject has a mark that cannot be directly seen but is visipfidinate frgme{C} is a 3D right h'and' Cartesian c_oordmate
in the mirror. If there is increased exploration of the sobge  SyStem affixed to the camera with iis-axis pointing out
own body and self-directed actions towards the mark, Rf the camera along the camera optical axis and’Haxis
implies that the subject recognizes the mirror image as seR0inting downward and being perpendicular to #saxis.
Testing results from psychologists and biologists shovt thd "€ °rigin of {C} is the camera centeC = 03x;. Frame
chimpanzees [2], dolphins [3], and magpies [4] have evident 1_iS the 2D image coordinate, whose origin is the image
self-recognition in front of mirrors while gorillas do not.  ©f C. called principal point and is denoted iy

If mirror or reflection detection is a challenging problem The 3D points IH{C} and the 2D p0|r_1ts IR} are der_10ted
for mammals, there is no doubt that it is also a challend?y @ Pold large-sizedX and small-sizedx, respectively.
ing recognition problem in robotic systems and comput and X are the mhqmogeneous a”‘?' the homogeneous
vision. Oren and Nayar [5] analyze the characteristic ang@'™s Of points, respectively. Moreover, if the homogereou

— T H
governing geometry of specular surfaces. However, theft = (_’7X7 nY,nZ,n)", the ;ela‘uon betweeX and X can
proposed method is limited to surfaces with high curvaturB€ Written asX = (X, Y Zg . for 7 7 Od o
and does not address detecting and modeling planar speculalr:ealture points are used for mirror detection:

surfaces. Active lighting is also used in assisting thectie 1) Real feature points are the feature points corresponding

of specular surfaces. For example, Reiner and Donnaer O real objects in the environment.
[6] utilize stereo vision and a two dimensional array of 2) Virtual feature points are the reflections of real feature
light sources for constructing specular surfaces. Regentl points in the mirror.

Kutulakos and Steger [7] introduce a light-path triangolat If @ real feature point ifC'} is X, then the corresponding
virtual feature point is denoted &§'. Superscript$ denotes
This work was supported in part by the National Science Fatiod the corresponding virtual feature points. The conventiso a
under CAREER grant 115-0643298 and MRI-0923203. applies to non-homogeneous points and 2D points.
A. Agha-mohammadi and D. Song are with CSE Department, - . . .
Texas A&M University, College Station, TX 77843, USA, (email: With the above notions and assumptions defined, our

al i agha@ anu. edu anddzsong@s. t anu. edu) planar mirror detection problem becomes

We start with elaborating assumptions below:
1) The image taken by the robot contains a part of the



Definition 1: Given images containing stationary objects
and their reflections, recognize corresponding real-airtu
pairs{x;, x;} in the image framd I} and estimate the mirror
planer,, in {C}.

To address this problem, we use a two-stage approach. n
First, we model the mirror reflection under camera perspec-
tive projection and derive the geometric constraints from
known 2D real-virtual feature point pairs ifif }. Second,
we present a robust estimation scheme to recognize 2D pairs
from raw features. We begin with the first stage.

Mirror Normal

Fig. 1. A 2D view of the camera, the mirror, and theth pair of feature

TRy M R | points. The view perspective is chosen so that the mirror mizgées to a
: ODELING MIRROR REFLECTION IN THE IMAGE line. The mirror is the perpendicular bisector of the linemecting theX

To derive the geometric constraints for real-virtual featu @ndX. Two green dashed lines are parallel to the mirror plane.
pairs in{I}, we first analyze mirror reflection for a single
real-virtual feature point pair and derive mirror normal.
B. Mirror Reflection Transformation
A. Deriving a Minimal Solution for the Mirror NE”“E' With the mirror normal ready, we can compute the trans-
Define thei-th real-virtual feature point pair &X;, X;}.  formation corresponding to the mirror reflection. Actually
The mirror plane must be the perpendicular bisector ahe reflection transformation maps the real feature pjnt
the line_segment connectirl; and X}. Three distinctive to the corresponding virtual featuse,. The transformation
pomts X;, X}, and the camera centdf define a plane is a function of mirror plane parameters. Defideas the
. Therefore, the mirror plane has to be perpendiculafistance from  the camera center to the mirror. Denoting the
tO ;. Back-projecting the corresponding 2D homogeneougistance fromX, to the mirror byd,, and the distance from
real feature pointx; = (x/,1)" € {I}, leads to a line the camera center &, along the mirror's normal byi(,. ),
parameterized by [12], which contains all possible 3D we can write down the following equations based on Fig. 1,
points associated witk;, _ ~ =
_ 1 X% = X + 2dn*
X;(A) =Ptx; + A\C = X;(\) = /\—iK_lxi7 @ dy = d—depy =d— XTai (4)
where P is the pseudo inverse of the camera perspectivEhus, we can write,
projection matrix,P = K[I3]|03x1], K is the intrinsic camera

X KT 215\ i ~ij aig T\ ~ij
parameter matrix[s is a 3 x 3 identity matrix, andC = X} = X +2(d =X a")n" = (Is—207AY )X +2dA".
(CT,1)T is the homogeneous form of the camera center. ) ST T , - ®)
Similarly, we can obtainX/()\’) from the corresponding Letting Xy = (X;,1)" and Xj = (X;7,1)", we can
virtual feature point. write the affine transformation in (5) in the matrix form,

It is apparent that/ bothX;(A\) and X/(\') are onm; X!, = HIX,, (6)
regardless of\ and \'. Therefore, we can calculata,,,
which is the normal ofr;, where HY is the reflection transformation matrix ifiC'}
n - X x X! @ which is determined by theé-th and j-th pairs of feature
i ’ v points,
where ‘x’ is the cross product operator. With another pair - (- 201AY  2dAY 0
of feature points, saying thg-th pair, we can define the - 0143 1 ’

planer; in a similar way. Since the mirror also has to be

perpendicular tor;, its normal can be computed as follows: SubsUtutmg (1) into (6) leads to,

I ypiipt ij
nij:nmxnﬂj:(f(ixfig % ()Nijxf(;) 3) Xi =H"PTx;, + AHYC. (8)
) _ iy Projecting X}, to the image plane results in the reflection
Note thatn'/, the normalized version af*/, does not depend ., 1<formation in{1},
on )\ and )\ values. As a convention, a hat above any vector
refers to the normalized form of that vector. For example, xj, = PHYP*x;, + \APHY C. 9
n = HnH for vector n. The first two entries of a vector is
denoted by subscrifit: 2. For example, ifh = [ny, no, n3]7,
then ny.o = [nl,ng]T

Thus, (1-3) allow us to obtain mirror normail//, based
on thei-th and thej-th feature point pairs. Note that the Ed. (9) provides a basis for finding the geometric con-
mirror normal vectom is always pointing inside the mirror Straint for real-virtual feature point pairs from a largenher
as shown in Fig. 1 in this paper. of noisy feature points in one image.

Note that depthi cannot be determined in a single view.

C. Constraints on Real-Virtual Feature Pairs



Lemma 1:If the feature points ir-th, j-th, andk-th pairs insensitive to some rotations, they are not reflection irarar
are matched correctly, then the following must be true, The SIFT feature point vectors of a real-virtual pair do not
TCix — 0 (10) necessarily match each other. This is true because a reﬂecti
k k ’ mathematically cannot be represented as a combination of
whereC = [Ki], (K(Is — QﬁijﬁijT)K—l) and matrix- proper rotation and scaling operations.
vector multiplication formata], b is used to represent the ~One quick remedy to the problem is to reduce SIFT feature
cross product of two vectors x b, where|a], is a3 x 3 vectors from 128 dimensions to 2D position only to avoid the
skew-symmetric matrix composed by elements from vectdnismatch in part of SIFT vectors that describe neighboring
a = (a1,as,a3)” according to conventions in [12]. characteristics with orientation information. We then lgpp
Proof: Eq. (9) introduces a line parameterized by RANSAC to see if we can find an inlier set that satisfies
which contains two point®H*’P*x;, and PHYC on the (10). We name this approach as the raw-SIFT approach.
image plane. From the 2D projective geometry [12], th&nfortunately, this approach is very inefficient due to the

defined line by these two points can be written as follows:small inlier ratio. Assume that there are a total numbenof
, i ot features which contaig < m real-virtual potential feature
l, = (PHYC) x (PHYP"xy). (11) pairs. Hence there arg correct pairs needed to be found.

Denoting 13 — 2ﬁijf1ijT) by Gij, we expand the above We have a total 01( ’1721 ) _ m(m—1) pairs_ Therefore, the

equation to, . . 4 2 . .
inlier ratio is Py Apparently, increasing the number

1. = (2KAYd)x (KGYK ™ 'x;) = 2d[Kh"] (KGYK ')x;. of extracted features: actually decreases the ratio. A low
- - - (12) inlier ratio means low signal to noise ratio and often leads t
Defining C* as [Kn"], (KGYK~!) and exploiting the fact failure. This also explains why light weighted featurestsuc

that x; lies on [}, we can writex;"l; = 0 and thus as Harris Corners [16] would not work well for this problem.
x;I'Cxy, = 0. [ | . . o _

The deviation of (10) from zero is often caused by thd3. Converting Reflection to Rigid Body Motion
mismatch between feature points in theh, j-th, andk-th Therefore, we need to find a way to utilize the high dimen-
pairs. We denote this deviation by, sional SIFT feature vector to reduce the number of possible

(13) pairs to increase the inlier ratio. The intuition comes from
a special case: Recall tha& and X’ refer to a real-virtual
wherel;, = x}C%. This inspires a metric to measure thefeature pair in{C'}. Assume there exists a secondary mirror
correspondence. We introdud®,’, which depends on the 7, sharing the same position and the opposite orientation of
distance fromx), to /;, and the distance fromy, to [, the unknown mirrorr,,,. Virtual feature pointX’ will have
3 1 1 y a secondary reflection point abomt, which is defined as
(DY) = (12 7 T2 7 )(6?)27 (14) X”. As a convention, we usé to indicate feature points
1) Tl e TGR2) created by the secondary reflection. It is clear K4t= X.
wherel(, q) andlj, , are theg-th component of vectork, Therefore, SIFT feature vectors & and X" should match

and I},, respectively. DZJ can be viewed as a standardized@ch other because their relationship is no longer a redtecti

ij _ T pij, _ JTy _ 7 T
ey =xy Cxp = x5 1), = lpxp, .

version ofe}’ with a clear geometric meaning. In fact, 7, does not need to be perfectly overlapped wifh
as we will show later. Introducing the artificial secondary
IV. ROBUSTEXTRACTION OF FEATURE PAIRS reflection is the key to the problem. Even for an arbitrary
We now know that correctly-matched real-virtual pairsts, we have the following observations:
have to satisfy (10) which can be measurediBy in (14). Lemma 2:For any mirror pairr,, andr,, the secondary

With a set of raw feature points, we can revise randorfeature pointX” created from the reflection oK’ about

sample consensus (RANSAC) [13] framework to find thers can be obtained from the original feature podt by

largest set of inliers which refer to pairs that conform t6)(1 performing a rigid body motion (i.e. a combination of proper

and estimate mirror parameters. The remaining questian is fotations and pure translations).

choose the most appropriate feature extraction and magchin ~ Proof: A rigid body motion can be represented by a

methods for the mirror detection problem. rotation about and a translation along a screw axis [17]. The

o o _ screw axis is defined by a unit vecterrepresenting the

A. Limitations of Existing Feature Detection Methods screw direction. Poird, lies on the screw axis and defines its
One natural choice is to apply the popular feature trangriginal position. Therefore, the tupl@, so, ¢,t) describes

formations such as scale invariant feature transformatian rigid body motion wherep is the rotation angle about

(SIFT) [14] or its variations [15] to extract feature pointsthe screw axis and is the length of translation along the

from original pixel intensity data. Those feature pointsscrew axis. The homogeneous transformation of the rigid

have been proven to be very robust in many applicationpody motion can be represented as:

However, an immediate limitation appears when applying R® s.50

them to the mirror detection problemlthough SIFT features A (s,s0,0,t) = ( PR ) ) ) (15)

are purposefully designed to be scale invariant and even O1x3 1



Based on [17] and simplifying the equation, we have, C. Reducing Secondary Reflection from 3D to 2D
5= (ss” —13)(1 — cos @) + [s]x sin ¢ + I3
q;> =ts — (R — I3)diag(so). (16)

RS2 is a rotation matrix corresponding to a rotation of angl€
¢ about the screw axis with direction that goes through
the origin, g5,° is a translation vector, and diag) refers

to a diagonal matrix with its diagonal vector equalstp To

prove Lemma 2, we need to show that
X" = A (s,so,9,t) X. a7

DefineH andH” as homography matrices for the reflec-
tions with respect tor,, andx,, respectively. Hence,

X" = H'X' = H'HX. (18)

Now we need to show ifH"H can be represented as @ ®)

A (8,50, 0,8). _ _ | |
Definen as the normal ofr,,, andd as the depth which Fig. 2. (a) The configuration of;, s, andmy,. w5 is perpendicular to

is the distance from the origin dfC} to ,,. Similarly, we 7 a(;‘d goes througlC. (b) The ideal configuration when; || mm and

define normah” and depthd” for =,. Based on (7)(n, d) o

and (n”,d") determineH and H", respectively. Denoting the image plane ag, the key of the reflection

H— ( G D ) and HY — ( G” D" ) (19) reduction is to force the secondary reflection planeo be
013 1 01«3 1 ’ perpendicular tar; and to pass through camera projection
whereG = 1 — 2aa7, D = 2¢da, G” = 1 — 20/a"7, centerC. Fig. 2(a) illustrates the plane relationship. Recall

I/ H H
andD” — 2¢"d"/". Sign variablec equals to+1 or —1 if that n” is the normal ofr,. 75 IS not unique because a

the camera projection center is in front of or behind mirroEiﬁeremn/{:? would re?“'t in. a different_rs. The interseqtion
., respectively. Similarly, sign variable’ equals tot1 or ~ CetWeens and 7 projects itself to a line'z, on y which

—1 if the camera projection center is in front of or behindd°€S through the principal point. Also, the normal 1ot

" H H " __
the secondary mirror, respectively. Multiplying these two equals tony,. SinceC lies onr, D" = 03,1 mul;c,t be true
homography matrices, we have: according to (19). The conditions af, L 7; andD"” = 031

lead to the fact that the 3D reflection abautis equivalent
H'H = < R q > 7 (20) to a 2D reflection about;, in 7; based on (9). Recall that
O1x3 1 x}, is the imaging point ofX}/, we know
whereR = GG andq = G”"D + D”. L — on/ §/'T
SinceG = I - 2na” and G” =1 - 2a”a"", matrices x| = HY,x,, where H), = ( 2~ My 02 2
(24

Translation
Trangformation

)

)
and
RR” = (G"G)(G"G) =G"GGTG"" =1, (21) x|/ = HY,PHP*x; + \H/,PHC. (25)

G and G” are symmetric with determinants efl. Conse- O1x2 1
qguently, we have

det(R) = det(G"”) det(G) = (—=1)(—1) = 1. (22) To find the matching features, we reflect the whole im-
age I aboutr;,. Then applying SIFT, we extract features
rom original imagel and the reflected imag€’. Denote
hese two sets of features hy = {x;}7, and " =
N {x”}m" | respectively. Performing matching between two

b=, s= (f x 1) t=0. (23) sets of featuress and .7” results in a set ofv matched

7 sin(0) pairs.#" = {(xs,x!)}*_,. SinceHY4,, andd" are known,
The result in (23) is true for non-parallel mirrors. If thermi (24) introduces a known one-to-one mapping and we can
rors are parallel, matriA degenerates to a pure translatiorretrieve x,’s from x)’s that make a sety’ = {x,}'_,.
andn” = n, the results aré = 0, s = n, t = 2(¢""d” —(d).  Substituting corresponding;’s and x;’s in .#", we end
The same conclusion holds for the lemma. m up with .7 = {(Xs, %))} ;.
Lemma 2 shows that two consecutive reflections are o )

equivalent to a rigid body motion. We are one step closer fg- Adjusting Image Plane to Reduce Perspective Changes
utilize SIFT feature vectors. However, performing such a 3D According to [14], SIFT is designed to be scale invariant
reflection is not straightforward because we do not have 38nd also works very well if the perspective change caused
positions of features. Fortunately, we can adjust the jposit by a rotation is no more than 40 degrees. An arbitrary rigid
and orientation ofr, to transfer the secondary 3D reflectionbody motion may include a rotation over the 40-degree limit

to a 2D reflection in{/} about a line. and decrease the effectiveness of SIFT feature matching. To

Since R is an orthogonal matrix with a determinant of 1,
R must be a proper rotation matrix. According to [17] an
plugging inH"H from (20), ¢, s, andt can be obtained,



ensure the quality of SIFT matching, it is desirable if the Algorithm 1: Robust Mirror Detection Algorithm
angle betweenr, and,,, 8 = £L(7s, ) < 20° since the input : Original captured imagé
reflection doubles the angle. To achieve this, we design anccll;]tput : Mirrordnmmaln and t?]e inlier_fealltur? S%f{f;}
; : oose a random; s passing the principal point ;
|ter§t|ye proced.ure. for counter =1 to 3 do

Initially, ;s is chosen randomly and does not change Reflect] aboutr;, using (24) to getl”’:
during the computation. Hence the relative position and Extract SIFT feature sets” = {x,}3, from I and

mym’’

. . . . . "o __ un
Orlen.tatlon petweems and 7 I.S fixed at a”_tlme' Any CF{erforrﬁxélFs'l':}j;;?:rrTi]p{or’ matching using [14] betweé&nand
rotation applied tor; is also applied tors. Knowing that the 77" 10 obtain.#" = {(xs,x!)}¥_,;
matching error will be ignorable when the conditiérc 20° Compute.# = {(Xs,X,)}_, using inverse of (24);
is satisfied, we rotate; to search for this configuration. The for ;;(}oﬁgleg% e 2 vairs from and denote them b
ideal case happens whén= 0 (Fig. 2(b)). This means that Sy = {(XZ,X;),F(]XJ.7X;P)}; y
feature vectors corresponding 3 and X” only have scale Computen® based on (3);
difference, which is perfect for SIFT matching. f’fu = ﬁul’: = 26
The initial run with the randomly selected,, and the " pairk = al
correspondingr, might not satisfy the conditiod < 20°. ComputeD}’ using (14);
To refine the solution, we rotate; to repeat the whole if [D)| <ty then
procedure to refine the solution. Each rotationrefis done L Zﬁ;:k iulu {pair k};
by applying a homographyiy that is created from a two- L ’
step rotation. First, we rotate the about the camer® axis Umax = arg maxy, |€ul;
by anglea to make it perpendicular ta,,. o is the angle C* = Cumax:

. . Apply MLE on ¢* to obtainn;
betweenr,, and the optical axis measured on the— Z Computea and 3 using (26);

plane of camera coordinates. Note that this rotation is a Rotate using Hg from (27);

standardY -axis rotation that can be represented by matrix ifLar(r:ec?usr(nﬁflﬁ”) < 20° then

RY. Then rotated mirror normal inp = RYn. Second, we L _ ’

rotater; using k% aboutz axis by angle3 to maker,,, and ~__feturm failure;

w, parallel. The normal of intersecting line of the rotated

mirror plane with image plane isg,.,. Thus,j is the angle

betweenn;., andng,, on 7;. a and 8 are computed as resolution of640 x 480 pixels. The testing images are taken

follows: using a pre-calibrated Canon A1000 digital camera.
T n In the first experiment, we illustrate the geometric con-
o = tan—]! (nl>’ B—cos ! [ a2 ) o5 straint in Lemma 1 using a sample case (Fig. 3(a)). The
ns IR, |07l geometric constraint in Lemma 1 can be visualized as a

oint-line relationship as shown in (13). For a real feature
oint x5, we can obtain a ling;, using (12). According to
Lemma 1, the corresponding virtual feature paijt must
Hrp=K (R;Rg) K1 (27) lie on l,. Fig. 3(a) shows this is true for correctly matched
pairs. To avoid a cluttered figure, we only show 10 matched
After each rotation, we remove self-matching pairs an@airs (totally 20 feature points) in Fig. 3(a).
reject outliers from.# using RANSAC framework. Define |t js worth noting that the seventh pair is not a true pair
¢ as the largest inlier pair set. Finally, Maximum Likeli- pecause it is not resulted from matching a real-virtualufest
hood Estimator (MLE) is used to compute the best mirropajr. The false matching is due to the existing symmetry
normal from the matches i@™*. The overall robust mirror in scene. Most of such false detections have been removed
detection algorithm (RMDA) is recapped in Algorithm 1, inysing RANSAC. This particular spurious match could not be
which ¢, is a threshold for distinguishing inlier and outlier removed because the direction of symmetry happens to be
pairs. Iteration numberV can be determined by choosingthe same as mirror normal. However, such case can be easily
95% probability of finding the solution in RANSAC. Note handled using depth information.
that since we only neefl < 20° instead off = 0, the outer  |n the second experiment, we compare the raw-SIFT
loop should converge within 3 iterations with each itenatio approach to our RMDA. We have tested both approaches
to refine the solution. If the loop cannot converge, it usuallon 51 images taken from large mirrors in gymnasiums,
means the assumptions in Section Il are violated and tl@,ﬁopping malls, showrooms, and etc. These photos contain
method fails. different mirror normal directions and different mirrozes
with different scenes. Fig. 3(b) shows some of these scenes.
For each image, we manually select correctly matched real-
We have implemented our mirror detection algorithnvirtual pairs to compute mirror normal as a ground truth.
using Matlab on a PC laptop with a Windows XP operatindf RMDA finishes successfully, and the angle between the
system. For the SIFT algorithm, we have used an opemirror normal from RMDA and ground truth mirror normal
source implementation of SIFT in [18]. The images have & less than 5 degrees, the method succeeds in recognizing

All above procedure is projectively equivalent to applyind;
the following homography to the image,

V. EXPERIMENTS
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(a) An illustration of feature points (small yellowtdpand geometric constraints (pink lines). Units are pixé€lge number on each feature point

shows that to which pair it belongs. (b) Sample test imagesA (cpmparison of successful rates of RMDA (shown in the soli)iand the raw-SIFT

method (shown in the dashed line).

the mirror. The performance of the algorithms depends or]
the number of correctly-matched features. Adjusting the
SIFT strength threshold changes the number of features ar@
affect the inlier ratio. A smaller strength threshold y&ld

a larger number of feature points. Fig. 3(c) shows averagé
success rates over all testing images for different values
of the strength threshold. To help understanding how thgs]
strength threshold affects the number of feature points, th
top horizontal axis of Fig. 3(c) provides the number of [6]
features for the corresponding threshold for a sample immage
which is the bottom-left image in Fig. 3(b). As shown in Fig.
3(c), success rates of RMDA steadily increases as the numbgll
of features increases while the raw-SIFT cannot utilize the
increased features. For failure cases, we find that lack ol
features is the primary reason.

VI. CONCLUSION AND FUTURE WORK 9]

We proposed a mirror detection method for recognizing a
large planar mirror using an image captured by a monocular
camera mounted on a mobile robot. We derived a closdiP]
form solution for computing the mirror normal and a ge-
ometric constraint between feature point pairs. We foungdij
that existing advanced feature detection methods are not
reflection invariant. We introduced an artificial secondarylz]
mirror into the system to transform the reflection relatlops
to an orientation preserving transformation. We also desig13]
an iterative method to adjust the configuration of the second
mirror to enable SIFT descriptor matching. Combining the
results, we proposed a robust mirror detection algorithch ari14]
the experimental results confirmed our analysis. In theréytu
we will work on depth assisted mirror detection and mirrofis)

boundary segmentation problems.
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