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Abstract— We report a method for the detection and recog-
nition of a large planar mirror based on the images captured
by a monocular camera. We start with deriving a mirror trans-
formation matrix in a homogeneous coordinate and geometric
constraints for corresponding real and virtual feature points
in the image. We find that existing feature detection methods
are not reflection invariant. We introduce a secondary artificial
reflection to virtual features to generate secondary features
which are proven to share a rigid body motion relationship
with the original feature set. We propose an iterative strategy
to adjust the secondary mirror configuration so that existing
feature matching methods can be used. The combined method
yields a robust mirror detection algorithm which has been
verified in physical experiments.

I. I NTRODUCTION

Mirrors are common objects in indoor environments and
challenge robots in navigation. Cameras or light detection
and ranging (LIDAR) cannot recognize mirrors because light
simply bounces off the mirror surface. As service robots
perform more and more tasks in indoor environments, the
ability to recognize mirrors is necessary.

The ability of detecting a mirror or its own reflection
in a mirror is a widely adopted test for intelligence levels
[1]. Gallup first studies the self-directed behavior of animals
using mirror-introduced tests [2]. A mirror and mark test
is the frequently used method with the following setup: A
subject has a mark that cannot be directly seen but is visible
in the mirror. If there is increased exploration of the subject’s
own body and self-directed actions towards the mark, it
implies that the subject recognizes the mirror image as self.
Testing results from psychologists and biologists show that
chimpanzees [2], dolphins [3], and magpies [4] have evident
self-recognition in front of mirrors while gorillas do not.

If mirror or reflection detection is a challenging problem
for mammals, there is no doubt that it is also a challeng-
ing recognition problem in robotic systems and computer
vision. Oren and Nayar [5] analyze the characteristic and
governing geometry of specular surfaces. However, their
proposed method is limited to surfaces with high curvature
and does not address detecting and modeling planar specular
surfaces. Active lighting is also used in assisting the detection
of specular surfaces. For example, Reiner and Donnaer
[6] utilize stereo vision and a two dimensional array of
light sources for constructing specular surfaces. Recently,
Kutulakos and Steger [7] introduce a light-path triangulation
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method for constructing refractive and specular 3D objects,
in which the light source must move along the light ray while
the camera captures two consecutive images of the reflected
light. Polarization imaging [8]–[11] is often used in mirror
or reflective surface detection.

Following a minimalist’s design, our robot only carries a
single monocular camera and needs to recognize planes of
large mirrored walls. We first derive a geometric constraint
that relates the feature points of real objects to their reflec-
tions in the image, which are named as real-virtual pairs. We
also find that existing advanced feature detection methods
such as scale invariant feature transformation (SIFT) are
not reflection invariant which leads to a high false negative
rate in matching real-virtual pairs. To address the problem,
we introduce a secondary artificial mirror reflection which
converts virtual features into secondary features that share a
rigid body motion relationship with the original features.The
proposed method has been verified in physical experiments.

II. PROBLEM DEFINITION

We start with elaborating assumptions below:
1) The image taken by the robot contains a part of the

planar mirror, some objects and their reflections.
2) All camera parameters are known.

There exist two coordinate frames in our system. Camera co-
ordinate frame{C} is a 3D right hand Cartesian coordinate
system affixed to the camera with itsZ-axis pointing out
of the camera along the camera optical axis and itsY -axis
pointing downward and being perpendicular to itsZ axis.
The origin of {C} is the camera center̃C = 03×1. Frame
{I} is the 2D image coordinate, whose origin is the image
of C̃, called principal point and is denoted byc̃.

The 3D points in{C} and the 2D points in{I} are denoted
by a bold large-sizedX and small-sizedx, respectively.
X̃ and X are the inhomogeneous and the homogeneous
forms of points, respectively. Moreover, if the homogeneous
X = (ηX, ηY, ηZ, η)T , the relation betweeñX andX can
be written asX̃ = (X,Y, Z)T for η 6= 0.

Feature points are used for mirror detection:
1) Real feature points are the feature points corresponding

to real objects in the environment.
2) Virtual feature points are the reflections of real feature

points in the mirror.
If a real feature point in{C} is X, then the corresponding
virtual feature point is denoted asX′. Superscripts′ denotes
the corresponding virtual feature points. The convention also
applies to non-homogeneous points and 2D points.

With the above notions and assumptions defined, our
planar mirror detection problem becomes



Definition 1: Given images containing stationary objects
and their reflections, recognize corresponding real-virtual
pairs{xi,x

′
i} in the image frame{I} and estimate the mirror

planeπm in {C}.
To address this problem, we use a two-stage approach.

First, we model the mirror reflection under camera perspec-
tive projection and derive the geometric constraints from
known 2D real-virtual feature point pairs in{I}. Second,
we present a robust estimation scheme to recognize 2D pairs
from raw features. We begin with the first stage.

III. M ODELING M IRROR REFLECTION IN THE IMAGE

To derive the geometric constraints for real-virtual feature
pairs in {I}, we first analyze mirror reflection for a single
real-virtual feature point pair and derive mirror normal.

A. Deriving a Minimal Solution for the Mirror Normal

Define thei-th real-virtual feature point pair as{X̃i, X̃
′
i}.

The mirror plane must be the perpendicular bisector of
the line segment connecting̃Xi and X̃′

i. Three distinctive
points, X̃i, X̃′

i, and the camera center̃C define a plane
πi. Therefore, the mirror plane has to be perpendicular
to πi. Back-projecting the corresponding 2D homogeneous
real feature point,xi = (x̃T

i , 1)
T ∈ {I}, leads to a line

parameterized byλ [12], which contains all possible 3D
points associated withxi,

Xi(λ) = P+xi + λC ⇒ X̃i(λ) =
1

λi

K−1xi, (1)

whereP+ is the pseudo inverse of the camera perspective
projection matrix,P = K[I3|03×1], K is the intrinsic camera
parameter matrix,I3 is a 3 × 3 identity matrix, andC =
(C̃T , 1)T is the homogeneous form of the camera center.
Similarly, we can obtainX̃′

i(λ
′) from the corresponding

virtual feature point.
It is apparent that both̃Xi(λ) and X̃′

i(λ
′) are on πi

regardless ofλ and λ′. Therefore, we can calculatenπi
,

which is the normal ofπi,

nπi
= X̃i × X̃′

i, (2)

where ‘×’ is the cross product operator. With another pair
of feature points, saying thej-th pair, we can define the
planeπj in a similar way. Since the mirror also has to be
perpendicular toπj , its normal can be computed as follows:

nij = nπi
× nπj

=
(
X̃i × X̃′

i

)
×
(
X̃j × X̃′

j

)
. (3)

Note thatn̂ij , the normalized version ofnij , does not depend
on λ andλ′ values. As a convention, a hat above any vector
refers to the normalized form of that vector. For example,
n̂ = n

‖n‖ for vectorn. The first two entries of a vector is
denoted by subscript1 : 2. For example, ifn = [n1, n2, n3]

T ,
thenn1:2 = [n1, n2]

T .
Thus, (1-3) allow us to obtain mirror normal,̂nij , based

on the i-th and thej-th feature point pairs. Note that the
mirror normal vector̂n is always pointing inside the mirror
as shown in Fig. 1 in this paper.
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Fig. 1. A 2D view of the camera, the mirror, and thek-th pair of feature
points. The view perspective is chosen so that the mirror degenerates to a
line. The mirror is the perpendicular bisector of the line connecting theX̃k

andX̃′

k
. Two green dashed lines are parallel to the mirror plane.

B. Mirror Reflection Transformation

With the mirror normal ready, we can compute the trans-
formation corresponding to the mirror reflection. Actually,
the reflection transformation maps the real feature pointx̃k

to the corresponding virtual featurẽx′
k. The transformation

is a function of mirror plane parameters. Defined as the
distance from the camera center to the mirror. Denoting the
distance fromX̃k to the mirror bydk and the distance from
the camera center tõXk along the mirror’s normal byd(c,k),
we can write down the following equations based on Fig. 1,

X̃′
k = X̃k + 2dkn̂

ij ,

dk = d− d(c,k) = d− X̃T
k n̂

ij . (4)

Thus, we can write,

X̃′
k = X̃k+2(d−X̃T

k n̂
ij)n̂ij = (I3−2n̂ijn̂ijT )X̃k+2dn̂ij .

(5)
Letting Xk = (X̃T

k , 1)
T and X′

k = (X̃′T
k , 1)T , we can

write the affine transformation in (5) in the matrix form,

X′
k = HijXk, (6)

whereHij is the reflection transformation matrix in{C}
which is determined by thei-th and j-th pairs of feature
points,

Hij =

(
I3 − 2n̂ijn̂ijT 2dn̂ij

01×3 1

)
. (7)

Substituting (1) into (6) leads to,

X′
k = HijP+xk + λHijC. (8)

ProjectingX′
k to the image plane results in the reflection

transformation in{I},

x′
k = PHijP+xk + λPHijC. (9)

Note that depthd cannot be determined in a single view.

C. Constraints on Real-Virtual Feature Pairs

Eq. (9) provides a basis for finding the geometric con-
straint for real-virtual feature point pairs from a large number
of noisy feature points in one image.



Lemma 1: If the feature points ini-th, j-th, andk-th pairs
are matched correctly, then the following must be true,

x′T
k Cijxk = 0, (10)

where Cij = [Kn̂ij ]×(K(I3 − 2n̂ijn̂ijT )K−1) and matrix-
vector multiplication format[a]×b is used to represent the
cross product of two vectorsa × b, where [a]× is a 3 × 3
skew-symmetric matrix composed by elements from vector
a = (a1, a2, a3)

T according to conventions in [12].
Proof: Eq. (9) introduces a line parameterized byλ,

which contains two pointsPHijP+xk and PHijC on the
image plane. From the 2D projective geometry [12], the
defined line by these two points can be written as follows:

l′k = (PHijC)× (PHijP+xk). (11)

Denoting (I3 − 2n̂ijn̂ijT ) by Gij , we expand the above
equation to,

l′k = (2Kn̂ijd)×(KGijK−1xk) = 2d[Kn̂ij ]×(KG
ijK−1)xk.

(12)
Defining Cij as [Kn̂ij ]×(KG

ijK−1) and exploiting the fact
that x′

k lies on l′k, we can writex′T
k l′k = 0 and thus

x′T
k Cijxk = 0.
The deviation of (10) from zero is often caused by the

mismatch between feature points in thei-th, j-th, andk-th
pairs. We denote this deviation by,

e
ij
k = x′T

k Cijxk = x′T
k l′k = lkx

T
k . (13)

where lk = x′T
k Cij . This inspires a metric to measure the

correspondence. We introduceDij
k , which depends on the

distance fromx′
k to l′k and the distance fromxk to lk,

(Dij
k )2 =

( 1

l2(k,1) + l2(k,2)
+

1

l′2(k,1) + l′2(k,2)

)
(eijk )

2, (14)

wherel(k,q) and l′(k,q) are theq-th component of vectorslk
and l′k, respectively.Dij

k can be viewed as a standardized
version ofeijk with a clear geometric meaning.

IV. ROBUST EXTRACTION OF FEATURE PAIRS

We now know that correctly-matched real-virtual pairs
have to satisfy (10) which can be measured byD

ij
k in (14).

With a set of raw feature points, we can revise random
sample consensus (RANSAC) [13] framework to find the
largest set of inliers which refer to pairs that conform to (10)
and estimate mirror parameters. The remaining question is to
choose the most appropriate feature extraction and matching
methods for the mirror detection problem.

A. Limitations of Existing Feature Detection Methods

One natural choice is to apply the popular feature trans-
formations such as scale invariant feature transformation
(SIFT) [14] or its variations [15] to extract feature points
from original pixel intensity data. Those feature points
have been proven to be very robust in many applications.
However, an immediate limitation appears when applying
them to the mirror detection problem:although SIFT features
are purposefully designed to be scale invariant and even

insensitive to some rotations, they are not reflection invariant.
The SIFT feature point vectors of a real-virtual pair do not
necessarily match each other. This is true because a reflection
mathematically cannot be represented as a combination of
proper rotation and scaling operations.

One quick remedy to the problem is to reduce SIFT feature
vectors from 128 dimensions to 2D position only to avoid the
mismatch in part of SIFT vectors that describe neighboring
characteristics with orientation information. We then apply
RANSAC to see if we can find an inlier set that satisfies
(10). We name this approach as the raw-SIFT approach.
Unfortunately, this approach is very inefficient due to the
small inlier ratio. Assume that there are a total number ofm

features which containq ≪ m real-virtual potential feature
pairs. Hence there areq2 correct pairs needed to be found.

We have a total of
( m

2

)
= m(m−1)

2 pairs. Therefore, the

inlier ratio is q
m(m−1) . Apparently, increasing the number

of extracted featuresm actually decreases the ratio. A low
inlier ratio means low signal to noise ratio and often leads to
failure. This also explains why light weighted features such
as Harris Corners [16] would not work well for this problem.

B. Converting Reflection to Rigid Body Motion

Therefore, we need to find a way to utilize the high dimen-
sional SIFT feature vector to reduce the number of possible
pairs to increase the inlier ratio. The intuition comes from
a special case: Recall thatX andX′ refer to a real-virtual
feature pair in{C}. Assume there exists a secondary mirror
πs sharing the same position and the opposite orientation of
the unknown mirrorπm. Virtual feature pointX′ will have
a secondary reflection point aboutπs, which is defined as
X′′. As a convention, we use′′ to indicate feature points
created by the secondary reflection. It is clear thatX′′ = X.
Therefore, SIFT feature vectors ofX andX′′ should match
each other because their relationship is no longer a reflection.
In fact,πs does not need to be perfectly overlapped withπm

as we will show later. Introducing the artificial secondary
reflection is the key to the problem. Even for an arbitrary
πs, we have the following observations:

Lemma 2:For any mirror pairπm andπs, the secondary
feature pointX′′ created from the reflection ofX′ about
πs can be obtained from the original feature pointX by
performing a rigid body motion (i.e. a combination of proper
rotations and pure translations).

Proof: A rigid body motion can be represented by a
rotation about and a translation along a screw axis [17]. The
screw axis is defined by a unit vectors representing the
screw direction. Points0 lies on the screw axis and defines its
original position. Therefore, the tuple(s, s0, φ, t) describes
a rigid body motion whereφ is the rotation angle about
the screw axis andt is the length of translation along the
screw axis. The homogeneous transformation of the rigid
body motion can be represented as:

A (s, s0, φ, t) =

(
Rs

φ q
s,s0
φ

01×3 1

)
. (15)



Based on [17] and simplifying the equation, we have,

Rs

φ = (ssT − I3)(1− cosφ) + [s]× sinφ+ I3

q
s,s0
φ = ts− (Rs

φ − I3)diag(s0). (16)

Rs

φ is a rotation matrix corresponding to a rotation of angle
φ about the screw axis with directions that goes through
the origin,qs,s0

2θ is a translation vector, and diag(s0) refers
to a diagonal matrix with its diagonal vector equal tos0. To
prove Lemma 2, we need to show that

X′′ = A (s, s0, φ, t)X. (17)

DefineH andH′′ as homography matrices for the reflec-
tions with respect toπm andπs, respectively. Hence,

X′′ = H′′X′ = H′′HX. (18)

Now we need to show ifH′′H can be represented as
A (s, s0, φ, t).

Definen as the normal ofπm andd as the depth which
is the distance from the origin of{C} to πm. Similarly, we
define normaln′′ and depthd′′ for πs. Based on (7),(n, d)
and (n′′, d′′) determineH andH′′, respectively.

H =

(
G D

01×3 1

)
and H′′ =

(
G′′ D′′

01×3 1

)
, (19)

whereG = I − 2n̂n̂T , D = 2ζdn̂, G′′ = I − 2n̂′′n̂′′T ,
andD′′ = 2ζ ′′d′′n̂′′. Sign variableζ equals to+1 or −1 if
the camera projection center is in front of or behind mirror
πm, respectively. Similarly, sign variableζ ′′ equals to+1 or
−1 if the camera projection center is in front of or behind
the secondary mirrorπs, respectively. Multiplying these two
homography matrices, we have:

H′′H =

(
R q

01×3 1

)
, (20)

whereR = G′′G andq = G′′D+D′′.
SinceG = I − 2n̂n̂T andG′′ = I − 2n̂′′n̂′′T , matrices

G andG′′ are symmetric with determinants of−1. Conse-
quently, we have

RRT = (G′′G) (G′′G)
T
= G′′GGTG′′T = I, (21)

det(R) = det(G′′) det(G) = (−1)(−1) = 1. (22)

SinceR is an orthogonal matrix with a determinant of 1,
R must be a proper rotation matrix. According to [17] and
plugging inH′′H from (20),φ, s, andt can be obtained,

φ = 2θ, s =
(n̂× n̂′′)

sin(θ)
, t = 0. (23)

The result in (23) is true for non-parallel mirrors. If the mir-
rors are parallel, matrixA degenerates to a pure translation
andn̂′′ = n̂, the results areφ = 0, s = n̂, t = 2(ζ ′′d′′−ζd).
The same conclusion holds for the lemma.

Lemma 2 shows that two consecutive reflections are
equivalent to a rigid body motion. We are one step closer to
utilize SIFT feature vectors. However, performing such a 3D
reflection is not straightforward because we do not have 3D
positions of features. Fortunately, we can adjust the position
and orientation ofπs to transfer the secondary 3D reflection
to a 2D reflection in{I} about a line.

C. Reducing Secondary Reflection from 3D to 2D
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Fig. 2. (a) The configuration ofπI , πs, andπm. πs is perpendicular to
πI and goes through̃C. (b) The ideal configuration whenπs ‖ πm and
θ = 0.

Denoting the image plane asπI , the key of the reflection
reduction is to force the secondary reflection planeπs to be
perpendicular toπI and to pass through camera projection
centerC̃. Fig. 2(a) illustrates the plane relationship. Recall
that n′′ is the normal ofπs. πs is not unique because a
differentn′′

1:2 would result in a differentπs. The intersection
betweenπs andπI projects itself to a linerIs on πI which
goes through the principal point. Also, the normal ofrIs
equals ton′′

1:2. SinceC̃ lies onπs, D′′ = 03×1 must be true
according to (19). The conditions ofπs⊥πI andD′′ = 03×1

lead to the fact that the 3D reflection aboutπs is equivalent
to a 2D reflection aboutrIs in πI based on (9). Recall that
x′′
k is the imaging point ofX′′

k , we know

x′′
k = H′′

2Dx′
k, whereH′′

2D =

(
I2 − 2n̂′′

1:2n̂
′′T
1:2 02×1

01×2 1

)
,

(24)
and

x′′
k = H′′

2DPHP+xk + λH′′
2DPHC. (25)

To find the matching features, we reflect the whole im-
age I about rIs. Then applying SIFT, we extract features
from original imageI and the reflected imageI ′′. Denote
these two sets of features byI = {xs}ms=1 and I ′′ =
{x′′s}

m′′

s=1, respectively. Performing matching between two
sets of featuresI and I ′′ results in a set ofw matched
pairs M ′′ = {(xs, x′′s )}

w
s=1. SinceH′′

2D and d′′ are known,
(24) introduces a known one-to-one mapping and we can
retrieve x̃′

k’s from x̃′′
k ’s that make a setI ′ = {x′s}

w
s=1.

Substituting corresponding̃x′′
k ’s and x̃′

k ’s in M ′′, we end
up with M = {(xs, x′s)}

w
s=1.

D. Adjusting Image Plane to Reduce Perspective Changes

According to [14], SIFT is designed to be scale invariant
and also works very well if the perspective change caused
by a rotation is no more than 40 degrees. An arbitrary rigid
body motion may include a rotation over the 40-degree limit
and decrease the effectiveness of SIFT feature matching. To



ensure the quality of SIFT matching, it is desirable if the
angle betweenπs andπm, θ = ∡(πs, πm) ≤ 20◦ since the
reflection doubles the angle. To achieve this, we design an
iterative procedure.

Initially, rIs is chosen randomly and does not change
during the computation. Hence the relative position and
orientation betweenπs and πI is fixed at all time. Any
rotation applied toπI is also applied toπs. Knowing that the
matching error will be ignorable when the conditionθ < 20◦

is satisfied, we rotateπI to search for this configuration. The
ideal case happens whenθ = 0 (Fig. 2(b)). This means that
feature vectors corresponding toX andX′′ only have scale
difference, which is perfect for SIFT matching.

The initial run with the randomly selectedrIs and the
correspondingπs might not satisfy the conditionθ ≤ 20◦.
To refine the solution, we rotateπI to repeat the whole
procedure to refine the solution. Each rotation ofπI is done
by applying a homographyHR that is created from a two-
step rotation. First, we rotate theπI about the cameraY axis
by angleα to make it perpendicular toπm. α is the angle
betweenπm and the optical axis measured on theX − Z

plane of camera coordinates. Note that this rotation is a
standardY -axis rotation that can be represented by matrix
Ry

α. Then rotated mirror normal isnR = Ry
αn. Second, we

rotateπI usingRz
β aboutz axis by angleβ to makeπm and

πs parallel. The normal of intersecting line of the rotated
mirror plane with image plane isnR1:2

. Thus,β is the angle
betweenn1:2 and nR1:2

on πI . α and β are computed as
follows:

α = tan−1

(
n1

n3

)
, β = cos−1

(
nT
R1:2

n′′
1:2

‖nR1:2
‖‖n′′

1:2‖

)
. (26)

All above procedure is projectively equivalent to applying
the following homography to the image,

HR = K
(
Rz

βR
y
α

)
K−1. (27)

After each rotation, we remove self-matching pairs and
reject outliers fromM using RANSAC framework. Define
C ∗ as the largest inlier pair set. Finally, Maximum Likeli-
hood Estimator (MLE) is used to compute the best mirror
normal from the matches inC ∗. The overall robust mirror
detection algorithm (RMDA) is recapped in Algorithm 1, in
which th is a threshold for distinguishing inlier and outlier
pairs. Iteration numberN can be determined by choosing
95% probability of finding the solution in RANSAC. Note
that since we only needθ ≤ 20◦ instead ofθ = 0, the outer
loop should converge within 3 iterations with each iteration
to refine the solution. If the loop cannot converge, it usually
means the assumptions in Section II are violated and the
method fails.

V. EXPERIMENTS

We have implemented our mirror detection algorithm
using Matlab on a PC laptop with a Windows XP operating
system. For the SIFT algorithm, we have used an open
source implementation of SIFT in [18]. The images have a

Algorithm 1: Robust Mirror Detection Algorithm
input : Original captured imageI
output : Mirror normaln and the inlier feature setC ∗

Choose a randomrIs passing the principal point of{I};
for counter = 1 to 3 do

ReflectI aboutrIs using (24) to getI′′;
Extract SIFT feature setsI = {xs}ms=1

from I and
I ′′ = {x′′s }

m′′

s=1
from I′′;

Perform SIFT descriptor matching using [14] betweenI and
I ′′ to obtainM ′′ = {(xs, x′′s )}

w
s=1

;
ComputeM = {(xs, x′s)}

w
s=1

using inverse of (24);
for u = 1 to N do

Randomly sample 2 pairs fromM and denote them by
Su = {(xi, x′i), (xj , x′j)};
Computenij based on (3);
Cu = Su; k = 2;
for a = 1 to w do

pair k = M [a];
ComputeDij

k
using (14);

if |Dij

k
| < th then

Cu = Cu ∪ {pair k};
k = k + 1;

umax = argmaxu |Cu|;
C ∗ = Cumax;
Apply MLE on C ∗ to obtainn;
Computeα andβ using (26);
RotateI usingHR from (27);
if arccos(n̂T n̂′′) ≤ 20◦ then

return n;

return failure;

resolution of640× 480 pixels. The testing images are taken
using a pre-calibrated Canon A1000 digital camera.

In the first experiment, we illustrate the geometric con-
straint in Lemma 1 using a sample case (Fig. 3(a)). The
geometric constraint in Lemma 1 can be visualized as a
point-line relationship as shown in (13). For a real feature
point xk, we can obtain a linel′k using (12). According to
Lemma 1, the corresponding virtual feature pointx′

k must
lie on l′k. Fig. 3(a) shows this is true for correctly matched
pairs. To avoid a cluttered figure, we only show 10 matched
pairs (totally 20 feature points) in Fig. 3(a).

It is worth noting that the seventh pair is not a true pair
because it is not resulted from matching a real-virtual feature
pair. The false matching is due to the existing symmetry
in scene. Most of such false detections have been removed
using RANSAC. This particular spurious match could not be
removed because the direction of symmetry happens to be
the same as mirror normal. However, such case can be easily
handled using depth information.

In the second experiment, we compare the raw-SIFT
approach to our RMDA. We have tested both approaches
on 51 images taken from large mirrors in gymnasiums,
shopping malls, showrooms, and etc. These photos contain
different mirror normal directions and different mirror sizes
with different scenes. Fig. 3(b) shows some of these scenes.
For each image, we manually select correctly matched real-
virtual pairs to compute mirror normal as a ground truth.
If RMDA finishes successfully, and the angle between the
mirror normal from RMDA and ground truth mirror normal
is less than 5 degrees, the method succeeds in recognizing
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Fig. 3. (a) An illustration of feature points (small yellow dots) and geometric constraints (pink lines). Units are pixels. The number on each feature point
shows that to which pair it belongs. (b) Sample test images. (c)A comparison of successful rates of RMDA (shown in the solid line) and the raw-SIFT
method (shown in the dashed line).

the mirror. The performance of the algorithms depends on
the number of correctly-matched features. Adjusting the
SIFT strength threshold changes the number of features and
affect the inlier ratio. A smaller strength threshold yields
a larger number of feature points. Fig. 3(c) shows average
success rates over all testing images for different values
of the strength threshold. To help understanding how the
strength threshold affects the number of feature points, the
top horizontal axis of Fig. 3(c) provides the number of
features for the corresponding threshold for a sample image,
which is the bottom-left image in Fig. 3(b). As shown in Fig.
3(c), success rates of RMDA steadily increases as the number
of features increases while the raw-SIFT cannot utilize the
increased features. For failure cases, we find that lack of
features is the primary reason.

VI. CONCLUSION AND FUTURE WORK

We proposed a mirror detection method for recognizing a
large planar mirror using an image captured by a monocular
camera mounted on a mobile robot. We derived a closed
form solution for computing the mirror normal and a ge-
ometric constraint between feature point pairs. We found
that existing advanced feature detection methods are not
reflection invariant. We introduced an artificial secondary
mirror into the system to transform the reflection relationship
to an orientation preserving transformation. We also design
an iterative method to adjust the configuration of the second
mirror to enable SIFT descriptor matching. Combining the
results, we proposed a robust mirror detection algorithm and
the experimental results confirmed our analysis. In the future,
we will work on depth assisted mirror detection and mirror
boundary segmentation problems.

ACKNOWLEDGEMENT

We thank J. Zhang and C. Kim for their insightful inputs
and help with the experiments. We thank Y. Xu, W. Li, Y.
Lu, and H. Li for their feedback.

REFERENCES

[1] W. G. Walter, “An imitation of life,” Scientific American, vol. 182,
no. 2, pp. 42–45, 1950.

[2] G. Gallup, “Chimpanzees: Self-recognition,”Science, vol. 167, no.
3914, pp. 86–87, January 1970.

[3] D. Reiss and L. Marino, “Mirror self-recognition in the bottlenose
dolphin: A case of cognitive convergence,”PNAS, vol. 98, no. 10, pp.
5937–5942, May 2001.

[4] H. Prior, A. Schwarz, and O. Gntrkn, “Mirror-induced behavior in the
magpie (pica pica): Evidence of self-recognition,”PLoS Biol, vol. 6,
no. 8, p. e202, 08 2008.

[5] M. Oren and S. K. Nayar, “A theory of specular surface geometry,”
International Journal of Computer Vision, vol. 24, no. 2, pp. 105–124,
September 1997.

[6] K. Reiner and K. Donner, “Stereo vision on specular surface,” in
Proceedings of 4th IASTED International Conference on Visualization,
Imaging and Image processing, Marbella, Spain, September 2004.

[7] K. N. Kutulakos and E. Steger, “A theory of refractive andspecular 3d
shape by light-path triangulation,”International Journal of Computer
Vision, vol. 76, no. 1, pp. 13–29, January 2008.

[8] M. Ferraton, C. Stolz, and F. Meriaudeau, “surface reconstruction of
transparent objects by polarization imaging,” inIEEE International
Conference on Signal Image Technology and Internet Based Systems,
2008.

[9] D. Miyazaki, M. Kagesawa, and K. Ikeuchi, “Transparent surface
modeling from a pair of polarization images,”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 73–82,
January 2004.

[10] S. Rahmann and N. Canterakis, “Reconstruction of specular surfaces
using polarization imaging,” inIEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’01), 2001.

[11] O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting ap-
plied to 3d reconstruction of specular metallic surfaces by polarization
imaging,” Applied Optics, vol. 45, pp. 4062–4068, January 2006.

[12] R. Hartley and A. Zisserman,Multiple View Geometry in Computer
Vision, 2nd Edition. Cambridge University Press, 2004.

[13] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysisand
automated cartography,”Communications of the ACM, vol. 24, no. 6,
pp. 381–395, June 1981.

[14] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 4, pp. 91–110,
Nov. 2004.

[15] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” in9th European Conference on Computer Vision (ECCV),
Graz, Austria, May 2006, pp. 404–417.

[16] C. Harris and M. Stephens, “A combined corner and edge detector,”
in Proceedings of the 4th Alvey Vision Conference, vol. 15, 1988, pp.
147–151.

[17] L.-W. Tsai, Robot Analysis: The Maechanics of Serial and Parallel
Manipulators. John Wiley and Sons, Inc, 1999.

[18] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library
of computer vision algorithms,” http://www.vlfeat.org/, 2008.


