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Abstract— We report our algorithmic development on the .‘1:':::::,7: | ! L
2-frame problem that a_ddresses the need of coordinating two : :-E----:-L: T Reques;e(;regions
networked robotic pan-tilt-zoom (PTZ) cameras forn, (n > 2), Yy |

competing rectangular observation requests. We assume the

two camera frames have no overlap on their coverage. A f———— _
request is satisfied only if it is fully covered by a camera ypo | Lo o oot Optimalimes
frame. The satisfaction level for a given request is quantiéd -

by comparing its desirable observation resolution with tha
of the camera frame which fully covers it. We propose a
series of exact algorithms for the solution that maximizes he Fig. 1. An illustration of the non-overlapping 2-frame pler.

overall satisfaction. Our algorithms solve the 2-frame prdlem . - )
in O(n?), O(n?m) and O(n?) times for fixed, m discrete algorithm for the rectilinear 2-center problem. The redsies

and continuous camera resolution levels, respectively. Weave I these problems are all points instead of polygonal region
implemented all the algorithms and compared them with the as those in the-frame problem. The objective of the-
existing work. frame problem is to maximize the satisfaction, which is not
a distance metric.

The p-frame problem can be applied to multiple camera
Networked Robotic pan-tilt-zoom (PTZ) cameras carsurveillance systems, especially those with multiplevacti
cover a large region of remote scene with high resolutionameras. Fiore et al. [5] propose a dual-camera system with
without requiring excessive network communication banda wide-angle static camera and a PTZ camera for pedestrian
width. Consider a set g5 (p > 2) networked PTZ cameras surveillance. While the wide-angle static camera monitors

in a large shopping mall for public surveillance, or in athe scene and detects pre-defined individual human aesviti
deep forest for natural observation. There ardlifferent (e.g., loitering), the PTZ camera takes high-resolutioages
rectangular observation requests proposed by multipie®nl of the human for close-up observation. El-Alfy et al. [6]
users or initiated byn situ sensors. With usually much more model the subject-camera assignment issue for a PTZ camera
competing requests than PTZ cameras available, an optinmatwork as a maximum matching problem in a bipartite graph
set ofp PTZ camera frames that best satisfies the requestad group the subjects using heuristics when there are less
needs to be computed. This is formulated as gkfeame camera than subjects. Different from these existing work,
problem in our previous work [1]. Fig. 1 illustrates a 2-fram the solution to thep-frame problem can be applied to opti-
problem instance. mally control PTZ camera parameters such that the camera
coverage-resolution tradeoff is achieved by maximizing th
satisfaction level of the observation to all objects.

The p-frame problem relates to thecenter problem and  Our group has been researching on developing intelligent
multiple camera surveillance. vision systems and algorithms using robotic cameras for a

The p-frame problem is structurally similar to thg- variety of applications [7]. In [1], we formulate theframe
center facility location problem. Givem request points problem and propose an approximation algorithm that runs in
in RY (d = 1,2,...), the task is to optimally allocatp  O(n/e> + p?/€%) time. An autonomous observation system
points as service centers to minimize the maximum distan¢eat adopts this algorithm with multiple PTZ cameras has
between points and their nearest service centers. Thadéstabeen introduced in [8]. However, the computation time of the
metric are usually Euclideaf¥?) or rectilinear (1°°). The algorithm is very sensitive to the approximation boundit
Euclideanp-center problem is NP-hard [2]. Eppstein [3]proves to be inviable for problems where exact or accurate
proposes a)(n log? n) algorithm for the Euclidean 2-center solutions are required. In this paper, we extend the single
problem. The rectilineap-center problem is also NP-hard frame selection algorithm in [9] to the cases where= 2
[2]. Bespamyatnikh and Kirkpatrick [4] propose a linearé¢im and propose a series of exact algorithms for the 2-frame

problem with different camera configurations.
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parallel. Thei-th request is defined as = [gi,gi,fi,yi,zi], where we abuse the set operatorto represent the 2D
where (gi,yi) and (z;,y,) denote the bottom-left and top- regional relationship between frame(s) and request(f)én t
right corners of the rectangular requested region, respeest of this paper. Here; C ¢ means that the region of
tively; z; € Z specifies the desired resolution level, whichs fully contained in that of.
indicates that each pixel in image corresponds tg a z; The metric in (1) is an extension of the Resolution Ratio
square area in the scene, afdis the set of all possible with Non-Partial Coverage (RRNPC) metric as in [1]. The
resolution levels. Therefore, biggere Z indicates bigger indicator function in (2) considers the camera coverage ove
camera frame coverage and thus can be interpreted as tequests. It implies that the request is not satisfied if it is
reciprocal of the conventional concept of resolution. Whenot or partially covered by a frame. The second term in
the PTZ cameras have a fixed resolution level= {z°}, (1) compares the resolution levels of camera frames and
where 20 is a constant; When cameras hawe discrete requests. The resolution ratio is truncated by 1 since finer
resolution levels,Z = {z!,22,...,2™}; Cameras can also camera resolution (smaller) than desirable ;) does not
have continuous resolution range= [z,z|, wherez andz increase the satisfaction level. This way, the satisfactio
denote the lower and upper bounds of the resolution levahetric in (1) represents a coverage-resolution tradeoith W
respectively. The input of the 2-frame problem is a set ahe NOC assumption, we know(ci, c2) = s(c1) + s(cz2).
n requestsk = {r;|i = 1,2,...,n}. We define the request EQq. (1) shows that the satisfaction of any candidatec;)
index set asP? = {1,2,...,n}. can be computed i®(n) time. Now we formulate the non-
A solution to the 2-frame problem consists of two cameraverlapping 2-frame problem as a maximization problem,
frames. Assuming a fixed aspect ratio (e.g. 4:3), a camete;, c3) = argmax., c,)ec 5(c1, c2).
frame can be defined as= [z, y, 2], where(z,y) denotes IV. ALGORITHMS
the center point of the rectangular frame and Z specifies A Feasibility condition
the resolution level of the camera frame. Here we consider y
the coverage of the camera to be rectangular according toWe start with analyzing the structural property of any
the camera configuration space. Therefore the width af@asible solution.

height of the camera frame can be represented-aand Definition 1 (Separation)Fo)r{ any intervallz,, z,], we
3z, respectively. The four corners of the frame are locateefine the 2-D point setS;*(z1,22) = {(z,y) €
at (z + %,y + %), respectively. R%|z; < 2 < 29} as anz-separation. Similarly, we define

Given w and h are the camera pan and tilt ranges,Sz(_ylvy?) = {(z,y) € R*jy1 <y < y»} as ay-separation
respectively, thelt = [0, w] x [0, k] x Z defines the set of all ToF interval [y1, o] _
candidate frames. Therefor@? indicates the solution space TOF  any  feasible  solution (ci,c2) =
for the 2-frame problem. Let us define any candidate solutiof1»¥1: 21 [£2, 42, 22]), we define,

to the 2-frame problem &g, c2) € C2. The objective of the SX(c1, c0) =8X (21 + ﬁ, 2y — @)
2-frame problem is to find the optimal solutiéei, c) € C? 24 24
that best satisfies the requests. USX(2g + %,m - %), 3)
B. Assumptions SY (c1,¢0) =SY (y1 + 3_;2’ Yo — 3%)
We assume that the two frames are either taken from two v 21 3z
cameras that share the same workspace or taken from the USe (g2 + oo T)’ )
same camera. Therefore, if a location can be covered byag illustrated in Fig. 2. Intuitively, (3) and (4) define the

frame, the other frame can cover that location, too. “gap” between frames.

We assume any feasible solution, c2) satisfies the Non-  Lemma 1 (Feasibility condition)Given any feasible so-
Overlapping Condition (NOC), i.e., the coverage regions dfition (¢, c2), it must have at least one non-empty separation
c1 andc; do not overlap. The NOC increases the overall covas defined in (3) and (45X (1, c2) U SY (c1,c2) # ¢.
erage of frames over requests since no request is redupdantiLemma 1 is straightforward from the NOC. Given the
covered by both frames and thus is a favorable solution wptimal solution(c;, c3), if SX(ci,c3) # ¢, we call the

applications where searching ability is important. problem is z-separable. Similarly, ifSY (¢i,c5) # ¢, we
call the problem isy-separable. These two cases are not
C. Satisfaction Metric and Problem Formulation mutually exclusive. Without loss of generality, we focus on

With the NOC, the overall satisfaction of requests z-separable problem in the rest of this paper. As a convention
(r1,7, ..., ) served by a solutioffic;, c) € C2 is from here on, we use; to represent the “left” frame of a
) sy i b ’

5 solution, ande, to represent the “right” frame as shown in

_ - - (2 ig. 2 for thez-separable problem. Hence, (3) is simplified
s(cr,c0) = I(cj,r;) - min(—, 1), () Fig. 2 P p '

;gzl ! Zj aS’Sg((CvaQ) = SeX(Il + 4%7:62 - 4%)

where B. Optimality condition

I(e,ri) = { Lt rice, ) Lemma 1 defines the necessary condition for any feasible

0 otherwise solution. Unfortunately, there are infinite number of separ



Minimal separation

Algorithm 1. Exhaustive Search Algorithm for-

! Separation .
o C:‘ ol a)s o Reques Separable Non-Overlapping 2-Frame Problem (ES-XS-2)
c, =C =C = . (g, x; .
' 1[7U4J LN . ;j frame Input: Request seR.
S 270 Output: (c7,c5)
Lt [ i 1 foreach S (i, z;) O(n?)
S*@x)— Fo 2 do
0 = —— : - 3 | if 7; <z, then
Xi Xy X % J i ; .
4 Computec; as in (8); Ti(n)
) . ) ) ) 5 Computec}, as in (9); Ti(n)
Fig. 2. An illustration of the optimals-separable solution. At least 6 end
one optimal solutlon(c17c2) = (c%,c)) corresponds to a separation 7 end
SX (@i, z.). SX (T, 2 ]) is a minimal separatiory; is the closest request he b P .
on the Ieizt hand side of line = Z;. Th is the second closest request on 8 return the best(ci, ;) pair; o(1)
the left hand side of linec = T;. clf can be incrementally computed by 4z Az
comparingc; andc!~, as in (12). x; > x5 — —*, and thuszy > x3. Therefore,ry + 5 >

tions. Next, we show how to reduce the problem to finitd2 T 2 - For anyrx = 2y, Y, Th, Ui, 2] € B3, we have,

candidate separations to search for the optimal solution. > r =l 4zy Ty < 2% 4 -2 42* 4+ 25 422
Given the optimal solutiofic}, ¢3) as illustrated in Fig. 2, = 2o e 2 7 2
slightly sliding ¢} to the right does not change its satisfac- >yt - 323 — ol — ﬁ T < Ui+ 3_25‘ — ﬁ
tion level until its left side overlaps with that of, (i.e., =% 2 72 g IR=T2 0 2o

T} — 421 — z,), because neither the camera resolution nofherefore;, C ¢, and B3 C R;.
the camera-request coverage relationship changes. Howeve Comparing (6) and (7), we hawgcs) < s(c;). However,

if we slide ¢ slightly to the left so that its right side is if s(c3) < s(c;), we can replace; with ¢, to obtain a

on the left hand side of that of;, i.e., 27 + 4% < 7;, better non-overlapping solution, which contradicts thet fa

the satisfaction level decreases because the frame loses Hiiat (ci, c3) is optimal. Therefores(c3) = s(c;) andc} is
complete coverage over request Similar arguments can optimal. Similarly, we can find a frame| with 7; = 77,

apply tocs. This tells us that at least one optimal solutionz; = 27, and 27 + 4% = m; for cj. Therefore,(c], c5)
is structurally defined by a separation, which correspoads ts an optimal solution.SX (z;,z;) = SX(c},c}) is the
a pair of request sides. corresponding separation fée,, ). [ ]

Lemma 2 (Optimality condition)For any z-separable Lemma 2 defines the necessary condition for one optimal
problem, there must exist one optimal solutionsolution. Each non-empty separatisgt (Ti,z;) corresponds
(d,c) = (=}, 91, 21), [75,v5, 25]) and a non-empty to a candidate solution. This leads to the exhaustive approa
separation S} (z;,z;), i,j € P, such that,r; C

¥4

. 42" _ . 4z(.
¢, with Il = =T, andr; C G with 2 — 58 = 2, o Eypaystive search
Thus SX (T, z;) = SX(c}, ch) is the non-empty separation

for thIS optlmal solution. Based on Lemma 2, for each non-empty separation
Proof: Given an optimal solutioricy, ¢5) as shown in  SX(z;, x ;), we reduce the 2-frame problem to two single
Fig. 2, we have, frame problems each finding the optimal frame that has its
. n . oo one side overlapping with one boundary of the separation.
s(c3) = ZI(% 7)) min (Z_;a 1). (5)  We define these two constrained optimal frames,
k=1 . 4z
Let R: represent the set of requests which are fully enclosed ¢; = arg nax s(c), s.t.r; Ccandz + 5 =T (8)
by c§ Then (5) is re-written as, _ s "
2k . %k T C — = —q..
Z 1(cs, mln( 1) = Z mln(;,l). c argczrgz?;z)s(c), sit.r; Ccandz 5 =L 9)
TkGR* T;CER; 2

6 We can find one optimal solution by exhaustively enumer-
©6) ating allO(n?) non-empty separations* (z;, x;), i,j € P.

Let z; be the spallestf-cgorginate of B3, Z; = For eachSX(z; ;). the corresponding candidate solution
ming, ery i FOr ¢ = [23,45, 23], there exists a4zframe (¢i,c)) can be obtamed by solving the two single frame
¢y = [, 15, 25], such thatyy = y5, z5 = 25 andzh — 5* = gyp-problems as in (8) and (9), respectively. Algorithm 1
xh — 432 = x;. Intuitively, c; is the frame similar toc;  summarizes the exhaustive search approach.

except that its left side overlaps with line= z;. Let it; be It is noticed that in lines 4 and 5 of Algorithm 1, it requires

the set of requests that are completely enclosed: byhen the subroutines that solve the two sub-problems as in (8)
and (9), respectively. Both subroutines runi(n) time.
Z I(ch, i mln( 1) = Z min(z—i,l). The implementation of the subroutines afig(n) depend
ryER) ri€R) Z2 on different camera resolution configurations, which will
*(7) be discussed in details later. The exhaustive search as in
Sincer; € Rj, thereforer; C c5. We havex, — 222 =  Algorithm 1 runs inO(n?) + O(n?) - T(n) time.



Algorithm 2: Sweeping Search Algorithm fore-
Separable 2-Frame Problem (SS-XS-2)

Input: Request seR;
Output: (c7,¢3);

(a)

(b)

© 1 Sort left sides ofR : B = [b[1], ..., bn]]; O(nlogn)
2 Sort right sides ofR : E [b[l] ., b[n]]; O(nlogn)
@ 3 Sort top sides ofR; O(nlogn)
4 Sort bottom sides oR; O(nlogn)
© 5 Sort requested resolutions &f; O(nlogn)
6 ¢y =¢icl=¢;c;=0; o(1)
® 7u=0; v=1; o(1)
8 while v < n O(n)
© 9 do
10 if B[u + 1] > b[v] #M ni mal separation
(0 11 then
12 Find b[v] belongs tor;; o(1)
. Minimal separation Separation 13 COI’T’]pI_,IteCJ2 as in (9) T (n)
! ) ) ) ) ) ) 14 if s(ci) + s(c3) < s(er) + s(c) then
Fig. 3._ An illustration lof the sweeping o_f separation b(_)umia Dur_lng 1s | (ci,c5) = (cf Cj) o(1)
sweeping from left to right, if the separation is not a minireeparation, 1 end =2 1772

we contract the separation by moving its left boundary tmést candidate
position and the optimal frame on its left hand side is cormgus in (12). 17 v=v+1 o(1)

If the separation is a minimal separation, its right frameasputed as in 18 end

(9), and forms a candidate solution with the optimal lefirfeamaintained 19 else

earlier. 20 u=1u+1; o(1)

D. Sweeping of separation boundaries 2 Find b[u] belongs tor; o)
22 Computec; as in (8); Ti(n)

However, further observation reveals a more efficient if s(c™) < s(ch) then

approach. Instead of enumerating &l(n?) separations 24 | e =l 0o(1)

SX(Ts,z;), i,j € P, we only need to consided(n) special ende“d

separatlons Given any non-empty separaﬂ@?{xl,%) as ., end

shown in Fig. 2, we can always contract it to a smaller, nong return (c}, ¢3) o(1)
negative width by moving the left separation boundary to the
right, until the left boundary overlaps with a right requestrames as in (8) and compare all of them. Given the minimal
side, which is the closest to the right separation boundag\eparanongX(xl, ) let r, be the second closest request
(e.g.,7; in Fig. 2). We define this separation with smallesteft to line x = z; as illustrated in Fig. 2,
non-negative width as the minimal separation.

Definition 2 (Minimal separation):Given any non-empty
separationSX (7;, z ;). defined by requests andr;, [,j € Then the computations cdh* andc ~ based on (10) only
P, we define it as the minimal separation with respedtiffer in computings(c}). Therefore we have,

h = argéréllrjl (z; — Tr), SLTL <T < z;. (11)

to r; if 7, is the closest request to line = x, among . A s(eh ) > s(d)
those on the left hand side of = z;, ie, | = & =19 . (12)
. _ - c; otherwise
arg minge p @j —T) StT < z;. E 1 d (12 ¢ . al ht
Given the optimal solution(c},cs) = (ci,c}) and its as. (11) and (12) suggest an incremental approach to

calculatec , L € P. We search for all candidate left
separa‘uon boundaries, which are defined by right request
sides{z;, | € P}, from left (x = —o0) to right (z = o)
and incrementally compute eaefp‘, l € P, as in (12).
To search for all minimal separations, we sort all vertical
guest sides and sweep a separation, which is defined by the
Avertical request sides, from left to right as illustratedrig. 3.
In each sweeping step, we either contract the separation
. My moving its left boundary toward right or expand the
clf _ arg max s(ch), stak + el <7 (10) separation by moving its right boundary toward right.

» keP 2 « Ifthe separation is not a minimal separation, we contract
Therefore, we can find an optimal solution by enumerating the separation by moving the left boundary to its next
all O(n) minimal separations. For each minimal separation  candidate position. The optimal frame on the left hand
SX(®1,z;), we compute the corresponding and c}. side of the new separation is computed as in (12).

The remaining question is how to efficiently compuie Figs. 3(f) to 3(g) illustrate these operations.

for each minimal separation. Direct computation based on « If the separation is a minimal separation. We compute
(10) requires to comput®(n) constrained optimal single the optimal frame on the right hand side of the separa-

corresponding separatioﬁrj‘(fi,%) as in Fig. 2, the cor-
responding minimal separation 'Sf(fl,gj) as illustrated
by the striped area. It is obvious thet = ¢! is the optimal
frame which is on the left hand side of boﬂglY (Z;,z;) and

S (1, z;). We define the optimal frame on the left hand side,
of a separation as follows. Given any left separation boond
atx =7, | € P, we define frame;;” as the optimal frame
that is on the left hand side of the left separation boundar



[ ] P12 camera frame Algorithm 3: Subroutine solving (9) with a fixed reso-

[ 1 Request lution

e  Base vertex Input: Right separation boundary at= z ;

Output: ¢J;

Create candidate frame;

Setws — 52 =z, yo + %52 =73

Calculates(cz2);

while y — 52 <y

do
Slide c; upward along liner = z; until one of its
horizontal sides aligns with that of a request;  O(1)
Updates(cz2); O

7 Slide

(ﬁ/‘:yk)

} Extended diagonal

o o B~ W N P

~

Fig. 4. An illustration of findingc}, as in (9) with fixed resolution. Slide
the candidate frame, along linex = z; from a initial position. Whenever 8 end

a horizontal frame side aligns with that of a request, thenghans(co) 9 return the bestey; o(1)
can be computed i®(1) time.

tion as in (9). Since the optimal frame on the left hand 2) Discrete Camera Resolutionglow we consider the

side of the separation is maintained as described abo@meras haven discrete resolution levels. In this case, for
each right separation boundary, we just run the subroutine

combining the two frames forms a candidate solution: ) X , i
After that, we expand the separation by moving thdD Algorithm 3 m times, each time for one resolution level,

fight boundary to its next candidate position and a nekfSPectively. Therefore, when the cameras haweliscrete

. k P .
sweeping step starts. The expansion from Fig. 3(d) fFsolution levels, Algorithm 2 runs i@(n”m) time.
Fig. 3(e) illustrates these operations. 3) Continuous Camera ResolutionBinally, we consider

. ] ) _ the cameras have continuous resolution rafge]. We
We summarize the sweeping search algorithm for solvin

x-separable 2-frame problem in Algorithm 2. Since both th
separation need to be contracted and exparded times,
respectively, the sweeping search as in Algorithm 2 runs
O(n)T1(n) time.

fiready know the left side of] satisfiesz} — 22 = z.
As shown in Fig. 4, the extended line of a horizontal
irequest sidey = ¥, intersects with linex = z; at vertex
&j,yk). (z;,7) is defined as Base Vertex (BV) in [9].
According to the optimality condition in Lemma 2 of [9],
one optimal frame=, must have one corner coincident with
E. Algorithm complexity with different camera resolutiona BV. Song et al. [9] propose a Base Vertex Incremental
configurations Computing with Diagonal Sweeping (BV-IC-DS) algorithm
. . to find an optimal frame. The basic idea is to expand the
We turn tp the the subroutme_s for solving the Su_bE:andidate frame along its extended diagonal by increasing
prob_lems as in (8). and (9), under dlffergnt camera res_01ut|0[he resolution. The satisfaction of the frame changes only a
configurations. Without loss of generality, we only dlscus§)(n) number of critical resolution values and the changes
the subroutine that calculates the optimal single framehentbetween consecutive critical values can be determined in

right han_d side of the separat_ioai,, as_ in (9). _ constant time. We apply a modified BV-IC-DS here. We skip
1) A Fixed Camera ResolutionMe first consider the case the details and readers can refer to [9] for details.

in which the cameras have a fixed resolutioge: zy. Given BV-IC-DS runs inO(n) for each BV and we havé(n)
the right separation bounjdary at=z; as shown in Fig. 4. Bys for each separation boundary. This means when cameras
Recall ¢} satisfiesz), — 4% = z; andr; C c}. Since the have continuous resolution leveld;(n) = O(n*) and

camera frame has a fixed size (resolution), we can align tidgorithm 2 runs inO(n?) time.

left side of a candidate fram®& with line z = z; and slide Theorem 1:When cameras have a fixed, discrete and
ce along the liner = z; while maintainingr; C c» to search continuous zoom level(s), Algorithm 2 runs i®(n?),
for all candidate frames. Based on the metric in (1), we kno(n?m) and O(n3) times, respectively.

thats(ce) changes only at the moments when one horizontal
side of ¢, overlaps with that of a request. Therefore, there
are totally O(n) candidate frames. Evaluating all of the We have implemented all the algorithms using Microsoft
candidate frames tak&3(n?) time. However since we have Visual C++ 2005. We test the algorithms on a desktop PC
sorted horizontal request sides, based on (1), each changaith a 3.2GHz Pentium(R) D CPU, 2 GB RAM, and a hard
s(c2) during the sliding can be determined @(1) time. disk of 320 GB. We test the speed of the algorithms with
Therefore, we can simply calculate the satisfaction of adifferent settings ofa.

initial candidate frame (e.g., the frame with + 3% =7;) We use random input for testing. First; 2-D points

and update(cz) by slidingcz upward along the line = z;  are uniformly generated acro$8, w] x [0, h]. Each point
while maintainingr; C c,. We summarize the subroutine indicates a location of interest and is designated as “seed”
in Algorithm 3, which runs inO(n). This means when the Each seed is associated with a random radius of interest.
cameras have a fixed resolutidn, = O(n) and Algorithm 2 To generate a request, we first randomly assign it to a seed.

runs inO(n?) time. Then within the radius of the seed, a 2-D point is randomly

V. EXPERIMENTS



£=0.25
2000 % £=0.30
&=0.35
4 Continuous zoom
1500 * Fixed zoom

g
2 1000
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R St Sl
0 Fig. 6. Sample simulation results for random input. Daslirelrectangles
20 80 140 200

denote requests and grey rectangles are optimal frames100, sq4 = 5.

continuous zoom and = 100. In both cases, our algorithm

Fig.5. C tati d of algorith ith a fixed and comti
9 OMPUEA 1O SPESC O AGOTAMS WA 8 1XeC. an S zoom reasonably locates 2 frames to cover most of the requests.

level(s), respectively, and the comparison with the appmation algorithm

in [1] with approximation bound = 0.35, 0.30 and 0.25, respectively. VI. CONCLUSION

generated as the center of the rectangular request regibn an\y,e formulate the non-overlapping 2-frame problem with

two random numbers are generated as the width and heigi¥n_partial coverage as an optimization problem. We prepos

of the request. Finally, the resolution value of the request 5 geries of algorithms for solving the problem under diffiére

randomly generated across the resolution rajage|. camera resolution configurations. For cameras with fixed,
Across the experiments, we set= 80, h = 60, z =5, y, discrete and continuous resolution level(s), we propose

zZ =15 andsq = 5. We set the fixed camera resolution asg|gorithms to solve the 2-frame problema@(n?), O(n%m)

% = 8. For each setting of:, 100 trials are carried out andO(n?) time, respectively. We have implemented all the

for averaged performance. Fig. 5 illustrates the relatims a|gorithms and experimental results are consistent with ou
between computation time ana for proposed algorithm complexity analysis.

with a fixed and continuous zoom level(s), respectivelys|t i
shown the proposed algorithm with fixed zoom is very fast. It
takes only 10 ms witlm = 200, which is usually very large We would like to thank N. Amato, J, Chen, F. van der Stappen,
for most surveillance systems. Though the computation tin¢. Papanikolopoulos, Z. Bing, R. Volz, and K. Goldberg foeith
of the algorithm with continuous zoom increases much fastérsightful inputs, C. Kim, J. Zhang, A. Aghamohammadi, and W
asn increases, it takes only less than 900 ms with- 200.  Li, for their contributions to the Networked Robot Lab at @iex
Both curves are consistent with our complexity analysis. A&M University.

We also compare the proposed algorithm with the approx- REEERENCES
i.mation algorithm in [1], Whi.Ch r_un inO(n/e3 + p2/€6) [1] Y. Xu, D. Song, J. Yi, and F. van der Stappen, “An approxioma
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