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Abstract— We present a motion planning algorithm for au-
tonomous aggressive vehicle maneuvers. The motion planner
takes advantages of the sparse stable trees (SST), the RRT*
algorithm and the model predictive control (MPC) design. The
use of the sparsity property helps to reduce the computational
burden of the RRT* method by removing non-useful nodes in
each iteration (i.e., rewiring) and therefore to quickly converge
to the optimal solution. A goal-biased input is used to achieve
a fast convergence. A nonlinear MPC is used to compute
and find the attracting area for the generated trajectory with
consideration of constraints of the system. We implement and
demonstrate the motion planning algorithm on a 1/7-scale
racing vehicle for autonomous aggressive maneuvers.

I. INTRODUCTION

Aggressive vehicle maneuvers are commonly used by
professional racing car drivers to achieve fast and agile
performance. Understanding these skilled maneuvers can
help to design autonomous driving capability and active
safety features under extremely events, such as emergency
maneuvers [1], [2]. Although various motion control strate-
gies are proposed (e.g., [2]–[4]), motion planning for for
these aggressive vehicle maneuvers is critical and still a
challenging task.

It is challenging to design a time-optimal trajectory with
a feasible initial condition [5]–[7]. Sampling-based mo-
tion planning algorithms, such as rapidly exploring ran-
dom trees (RRT) [8] and sampling-based model predictive
(SBMPC) [9], efficiently find feasible trajectories over com-
plex dynamics, constraints and obstacles. These algorithms
have demonstrated the ability to produce feasible open-loop
trajectories but they cannot guarantee the optimality of the
produced trajectory. The development of the RRT* algorithm
guarantees the asymptotically optimality [10] through the
nearest and rewiring strategies in the tree node expansion
process. However, since the boundary-value problem of
complex dynamics is difficult to solve, the rewiring process
of the RRT* algorithm cannot be implemented accurately.

Recently, a modified RRT* algorithm is implemented to
find a minimum-time trajectory for autonomous high-speed
driving of vehicles [11]. To achieve a fast computation,
a simple particle model is used to transform the steering
problem for the half-car model [12]. The sparse-RRT method
does not use the rewiring process and instead provides
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asymptotic near-optimality for planning without access to
a steering function [13]. Motion primitives are used to
generate feasible, fast trajectory for vehicle maneuvers and
optimality of the trajectory is however not guaranteed [14].
Randomized motion planning algorithms are also proposed
to generate open-loop sequences of minimum-time motions
for successful simulation [11], [12], [15]. Closed-loop RRT-
based motion planning algorithm is implemented in [16]
for real-time autonomous vehicles but the optimality of
the trajectory is not considered and guaranteed. Feedback-
based motion planning algorithms are developed in [17] with
guaranteed control stability and safety.

In this paper, we present a motion planning approach that
takes the advantages of the local steering algorithm [12] and
the sparse search method with integration of a nonlinear
MPC (NMPC) [15]. One attractive property of the proposed
motion planner is fast computation for real-time applications.
Indeed, we implement and demonstrate the motion planning
algorithm using a 1/7-scale autonomous vehicle. We also
compare the performance under the autonomous driving
control and the expert human driver. The main contribution
of this work lies in the design and implementation of a
reliable motion planning scheme for autonomous vehicle
aggressive maneuvers. The proposed sparse-based motion
planner is adopted from [15] and the use of the MPC for
the steering function is inspired from [12]. We extend the
work in [15] to take advantage of the steering function and
that the rewiring process is used only for the dynamically
reachable nodes to reduce the computational cost. The com-
bined feedback linearization and NMPC design is used as the
lower-level controller for robust motion performance [4]. The
main focus of this paper lies in motion planning algorithms
of the autonomous aggressive vehicle maneuvers while the
companion paper [4] deals with the motion control of the
vehicle to follow a given desired trajectory.

The remainder of the paper is organized as follows.
We present the vehicle dynamics and motion control in
Section II. The main motion planning algorithm is presented
in Section III. Section IV presents the experimental results.
Finally, we summarize the concluding remarks and future
research directions in Section V.

II. VEHICLE DYNAMICS AND MOTION CONTROL

In this section, we present the dynamics model and motion
control for aggressive maneuvers. The main part of this
section has been discussed in [4] and we briefly present here
for self-contain of the paper.

The scaled vehicle prototype is shown Fig. 1(a) and
Fig. 1(b) shows the indoor vehicle track for experiments.
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Fig. 1. (a) Autonomous scaled vehicle. (b) The indoor robotic vehicle testing track. (c) A schematic of the robotic vehicle motion.

Fig. 1(c) illustrates the schematic of the vehicle kinematics.
The vehicle planar motion is captured by two frames: an
initial frame N (X,Y ) and a body-fixed frame B(x, y). The
origin of B is located at the mass center G (also assumed
as the geometric center of the vehicle chassis). The vehicle
pose is denoted as q = [x y ψ]T in N , where [x y]T is the
position vector of G and ψ is the yaw angle. The velocity
vector is v = [vx vy ψ̇]T . We denote the distances from G
to the front and the rear wheels as L1 and L2, respectively
and L = L1 + L2 is then the wheel base. We also denote
the vehicle width as 2W and the mass and mass moment of
inertia about the z-axis in B as m and Iz , respectively.

From [4], we obtain the equations of motion of the vehicle

Mq̈ +C(q, q̇) = Bx(δ)F x +By(δ)F y, (1)

where F x = [Fflx Ffrx Frlx Frrx]
T , F y =

[Ffly Ffry Frly Frry]
T , Fijx and Fijy , i = f, r, j = l, r,

are the longitudinal and lateral forces at the front (rear), left
(right) tires, respectively. Matrices M , C, Bx and By are
given in [4] and we omit the details here. Input δ is the
steering angle. Defining the state variable z = [qT q̇T ]T and
inputs u = [δ F x]

T , we can rewrite the dynamics model (1)
as

ż = f(z,u). (2)

To capture the tire-road interaction forces, we use the Pace-
jka’s magic formula [18] and the model parameters are
obtained through fitting experimental data. The vehicle center
slip angle is β = tan−1 (vy/vx).

The motion control is built on a feedback linearization
and an NMPC design. The former computes the desired tire
friction forces and the NMPC tries to regulate the steering
angle and tire forces to follow the desired profiles [4].

For the feedback linearization design, we consider to track
the center point between C1 and C2 (in Fig. 1(c)) with
position vector rP = [x + L1cψ y − L1sψ]

T . Taking the
time derivative twice of rP leads to

r̈P = ΛM−1(BxF x +ByF y −Cv) + Λ̇v, (3)

where

Λ =

[
cψ − sψ −L1 sψ
sψ cψ L1 cψ

]

The feedback linearization control of force F x is designed
as F x = Γ−1[r̈d+Kd(ṙd− ṙP )+Kp(rd−rP )]+ϑ̂, where
Γ = ΛM−1Bx, ϑ = ΛM−1ByF y+Λ̇v, and Kp and Kd

are positive diagonal matrices. Defining e = rd − rP , the
closed-loop error dynamics ë + Kdė + Kpe = ϑ̂ − ϑ is
stable for positive diagonal matrices Kp and Kd.

For a given desired trajectory, an NMPC is used to design
a steering controller to follow the path. We formulate the
NMPC control problem in discretized system dynamics of (2)
as

min
Δu(t)

k+Hp∑
i=k

(l1‖ei‖2 + l2‖ėi‖2 + l3‖Δui‖2)

subject to zk+1,t = f(zk,t,uk,t)

umin ≤ |uk,t| ≤ umax,Δumin ≤ |Δuk,t| ≤ Δumax

uk+1,t = Δuk+1,t + uk,t, k = t, . . . , t+Hp,

where lj , j = 1, · · · , 3, are constant weights, z(t) =
[zt,t zt+1,t · · · zt+Hp,t] with zt,t = z(t) is the sequence
of states z(t) over the prediction horizon Hp at time t.
Terms uk,t and Δuk,t are the kth input sequence ut and
Δut respectively.

III. OPTIMAL KINODYNAMIC MOTION PLANNING

Let compact sets Z ⊂ R
n and U ⊂ R

m denote the
trajectories and the controls for system (2), respectively. Let
Zo ⊂ Z and Zg ⊂ Z denote the obstacle and goal regions,
respectively. The feasible region is then Zf := Z/Zo.
The vehicle is first located at z0 ∈ Z and must maintain
inside feasible region Zf and reach Zg . A feasible trajectory
ω ∈ Zf over duration T is a set of dynamic states of the
vehicle system over [0, T ] which connect z0 to Zg with cor-
responding controls u. Ω is the set of all feasible trajectories
in Zf . The motion planning for given {Zf ,U , z0,Zg} is
to find trajectory ω ∈ Ω while minimizing a cost function
(i.e., traveling time). The cost function c �= 0 for trajectory
z ∈ Z is defined as

Jc(z) =

∫ T

0

c(z(t))dt.

The RRT* algorithm [10] is a sampling-based motion
planner that guarantees the optimality. The main approach of



RRT* is the use of the Nearest and Rewire procedures
that need Steering function to connect two different nodes
in the configuration space. In the Sparse-RRT [15] algorithm,
the Nearest function is used but Rewire is not used
because of the difficulty to solve boundary-value problem
(BVP). A Drain function is also used to remove the nodes
with higher costs in neighboring sets and keeps the lowest-
cost node. In our approach, we instead use the NMPC
controller to connect the nodes.

We extend the RRT* algorithm described in [11] and take
modifications to add the attractive properties of the Sparse-
RRT [15] as a Drain function. Unlike the approach in [12]
to connect the nodes in rewiring process, the NMPC design
is used to connect the nodes for the vehicle dynamic model.
The Sparse-RRT* is illustrated in Algorithm 1. Fig. 2 also
illustrates the construction of the BestNearest, Drain
and Rewire processes in the Sparse-RRT* design and these
processes are described in the following discussions.

Algorithm 1: Sparse-RRT*(Zg,U , z0,Zf , imax)

V ← z0, E ← ∅, i ← 0;1

for i < imax do
zrand ← Sample(Zf ,Zg);2

znear ← BestNearest(V, zrand,Δnear);3

znew ← Steering(znear, zrand,Zf );4

if znew �= ∅ then
V ← V ∪ {znew}, E ← E ∪ {(znear, znew)};5

V,E ← Rewire(V, znear, znew);6

V,E ← Drain(V, znew,ΔDrain);7

i ← i+ 1;8

Sample: Inspired from the MPC-tree method [9], we
take the goal-directed samples in the steering function de-
sign. The main idea of the goal-directed sampling process
is to take a small percentage (e.g., 5%) of the samples
biased toward the goal. Such process would help to quickly
converge to the goal. The sampled point is presented in Fig. 2
with an orange circle as zrand.
BestNearest: The main concept of the

BestNearest function is illustrated in Fig. 2. The
circle around zrand with a radius of ΔNear defines the
area that the algorithm searches for the neighbors. Similar
to the RRT* [12] and Sparse-RRT [13] algorithms, the
BestNearest function in Algorithm 1 tries to find a
node with the minimum cost within a vicinity Δnear of
znew. The vicinity is limited only to the nodes that are
dynamically feasible to be steered from znear to znew. The
BestNearest function is illustrated in Algorithm 3. The
Near function returns all the nodes in V that are in vicinity
of zrand within a radius of Δnear. The nodes in ZNear are
restricted to those that are dynamically feasible through
FeasibleNear function in the algorithm.
Steering: Unlike random propagation in [13], in the

Sparse-RRT* algorithm, the nearest node zNear is driven to-
ward zrand (usually close to znew) using also the Steering

Fig. 2. Drain and Rewiring method after generating a new node is
graphically presented in a selected picture.

Algorithm 2: BestNearest(V, zrand,Δnear)

ZNear ← Near(V, zrand,Δnear);1

ZNear ← FeasibleNear(ZNear, zrand);2

if ZNear = ∅ then Return : Nearest(V, zrand);
else Return : argminz∈ZNear

c(z)3

function, as illustrated in Fig. 2. The advantage of using
the Steering function is that when the system has an
obstacle-free path to Zg , the goal-directed sampling helps
a fast convergence to obtain the initial trajectory for real-
time applications.
Rewire: To find the nodes ztorewire that need to be

rewired, the vicinity of znew within a radius of Δnear is used
to restrict to the nodes that are dynamically feasible, as the
gray circle area illustrated in Fig. 2. We also use a vicinity
around znew within a radius of Δrewire as the converging area
from node ztorewire. The main difference and advantage of
the Sparse-RRT* algorithm with the Sparse-RRT in [13] is
the added Rewire function. The reason of not using the
Rewire function in [13] lies in difficulty to solve the BVP.
At each iteration, after sampling a new state and extending
the tree towards the new state, the Rewire function attempts
to re-assign the parent of each nearby node. To reduce the
number of the attempts, the vicinity of the nearby nodes is
restricted to the ranges of the NMPC can steer to. In the
RRT* algorithm [12], the number of times to invoke the
Steering function is O(n log n) and the collision check is
implemented after the rewiring by the Steering function.
To reduce the computational burden, the collision check is
enforced while propagating. We also use the closed-loop
NMPC to steer the system from one node to another with
its inherent optimization formulation.
Drain: The main idea of the Drain function is to

divide the search space to subsections and then use search
methods to connect the subsections and find the trajectory.



Comparing with other algorithms, the main difference in this
work is that the subsections are chosen dynamically while
the tree is growing. Unlike [15], the drain region ΔDrain is
selected regarding to the attraction region of the dynamic
system. In Fig. 2, drain region ΔDrain is illustrated as the
blue circles where all the nodes in the vicinity of znew within
ΔDrain are called zpeer. The Drain function is illustrated in
Algorithm 3. In algorithm 3, z.children is the number of
the children of node z and ZUseless is set of the nodes which
have higher cost than the best reached node and ZReached is
the set of the nodes that reach the goal.

Algorithm 3: Drain(V, znew,ΔDrain)

ZDrain ← Near(V, znew,ΔDrain);1

if c(znew) ≥ argminz∈ZDrain
c(z) then remove(znew);2

else
for z ∈ ZDrain do

if z.children = 0 then remove(z);3

if ZReached �= ∅ then
ZUseless ← {z ∈ V |c(z) ≥ argminz∈ZReached

c(z)};4

for z ∈ ZUseless do remove(z);5

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

We conduct simulation comparison of the running time,
number of the nodes and cost function convergence among
the RRT*, SST and Sparse-RRT* (SRRT*) algorithms. Fig. 3
shows the comparison results (average of 20 random runs)
of these algorithms: the running time (Fig. 3(a)), the number
of the nodes (Fig. 3(b)) and the cost (i.e., traveling time)
(Fig. 3(c)). For the computation load, the Sparse-RRT* per-
forms slightly better than the SST and the RRT*. The number
of the nodes for the RRT* is increasing linearly with the
iterations while for the SST and the Sparse-RRT* algorithms,
they reach almost constants after certain iterations due to
the sparse properties used in the algorithms. The costs of
the Sparse-RRT* and the RRT* finally maintain at the same
lower-level, smaller than that of the SST. All of these results
demonstrate the attractive properties of the Sparse-RRT*
algorithm.

Table I shows the simulation results under different al-
gorithms for the U-turn vehicle maneuver. Similarly, the
number of the nodes for the Sparse-RRT* is less than the
other two methods. The cost function converges similar to
that of the RRT* while the traveling time under the SST is
much larger than the other algorithms. Similar to that shown
in Fig. 3(a), the Sparse-RRT* algorithm is faster than both
the other two methods.

B. Experimental Results

We built a 1/7-scale vehicle (Traxxas XO-1 model) for the
experiments as shown in Fig. 1(a). The vehicle is modified
by adding various onboard sensors and actuators [4]. In our
experiments, the real-time position information of the vehicle

TABLE I
SIMULATION RESULTS UNDER THREE DIFFERENT MOTION PLANNING

ALGORITHMS (50000 ITERATIONS)

Method Nodes Time Cost

U-turn (Time)

RRT*

SST

Sparse-RRT*

27350

6105

4573

412

323

291

2.87

3.18

2.93

is obtained through the optical motion capture systems (8
Bonita cameras from Vicon Inc.) An embedded real-time
system (myRIO from National Instruments) is installed on
the vehicle to collect and sample all onboard sensors and
control the actuators at a frequency of 1 kHz. The motion
capture system is synchronized with the onboard embedded
system through the wireless networks connected by a laptop
computer. A track is built and used for the experiments as
shown in Fig. 1(b). The shape and geometry (i.e., straight-
line and U-turn shapes) of the track are specially designed
to test the aggressive vehicle maneuvers.

The time-optimal trajectory computation by the Sparse-
RRT* is not fast enough for online motion planning. In our
experiments, the optimal motion planning is first computed
off-line and the motion controller is implemented to follow
the trajectory. The NMPC is implemented to follow the
minimum time trajectory computed by the Sparse-RRT* off-
line. Fig. 4 shows the time-optimal trajectory generated by
the Sparse-RRT* algorithm (i.e., the solid line). The blue-
dot line in the figure indicates the NMPC tracking results
after the optimal trajectory is generated by Sparse-RRT*.
The main reason of conducting the NMPC in simulation is
to check that the small tolerances in the rewiring process do
not produce any problems.

For comparison purpose, we also invited an expert RC
vehicle driver to the campus and conducted driving tests.
The human expert driving tests were conducted for several
times and all motion data were recorded. Taking the same
starting and the ending points, we conducted the autonomous
driving tests. The mathematical model of the vehicle is first
obtained and the values of the vehicle parameters are listed
in Table II. Then the motion controller is implemented to
track the optimal trajectory generated by the motion planner.

Fig. 5 shows the comparison results of the motion planning
under the human expert driving and the autonomous control.
The Sparse-RRT* is used to generate the time-optimal tra-
jectory for the autonomous driving test rd as shown in the
figure. Under the motion control design, the vehicle tries to
follow the desired trajectory with the shortest time. As shown
in Fig. 5, the NMPC tries to minimize the tracking error and
the trajectories under the motion controller and the human
driver do not follow the motion planner result. Furthermore,
we also compute and list the traveling times under these
two cases in Table III. For comparison purpose, we list the
maneuver agility metrics in the table. These agility metrics
include the accumulated lateral jerk and the accumulated
relative lateral acceleration of the vehicle [1]. Both metrics
listed in the table are calculated over the traveling distances.
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Fig. 3. Comparing the number of the nodes, computational time and convergence of the cost function for vehicle motion planning. (a) The elapsed time
of different methods for the car mode. (b) Number of the generated nodes for the car model. (c) Convergence of the cost function (Time) for the car model.
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Fig. 4. The time-optimal trajectory using the Sparse-RRT*. The results
are obtained under 500, 000 iterations, 2, 573 nodes, 1, 570 rewiring and
601, 260 of drained nodes in 1, 063.97 seconds. (ΔNear = 0.5 and
ΔDrain = 0.1). The optimal traveling time is found as 2.93 s.
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Fig. 5. Trajectory comparison under two different autonomous control
designs and human test.

It is clear from those results that the autonomous controller
achieves the shorter traveling time and higher agility than
those by the human expert driver.

Fig. 6 further shows the vehicle motion comparisons under
the control design and human’s test. Fig. 6(a) shows the
longitudinal and lateral velocities, Fig. 6(b) demonstrates

TABLE II
THE VALUES OF THE TESTING VEHICLE PARAMETERS

m (kg) L1 (m) L2 (m) W (m) h (m) Iz (kg m2)

6.0 0.2 0.2 0.15 0.05 0.25

TABLE III
TRACKING PERFORMANCE COMPARISON UNDER TWO CONTROLLERS

AND THE HUMAN DRIVER

Controller Traveling time (s) Agility metric 1 (m/s3) Agility metric 2

Proposed 3.18 5.31 0.58

Human 3.26 7.36 0.65

the yaw-rate (ψ̇) comparisons, Fig. 6(c) shows the slip
angle comparisons and finally, Fig. 6(d) shows the steering
angle comparison. It is clearly shown in these figures that
under the NMPC, the vehicle runs smoothly without quickly
changing of the steering and slip angles, which is observed
by the performance of the human expert driver. Both the
autonomous and human expert driving show large slip angles
(around more than 10 degs). This observation is similar to
the comparison between the professional racing drivers and
the typical human drivers presented in [1].

V. CONCLUSION AND FUTURE WORK

We presented the Sparse-RRT*-based motion planning
algorithms for autonomous aggressive vehicle maneuvers.
The Sparse-RRT* motion planner took advantages of the
Sparse-RRT and the RRT* algorithms. The advantage of
sparse property for motion planning helped to reduce the
computational burden by removing un-useful nodes in the
searching process. The attractive property of the RRT* lies
in fast convergence to the optimal solution. We implemented
and tested the motion planner using a 1/7-scale autonomous
vehicle. Comparison with human expert driver was presented
in the paper. The experimental results have demonstrated the
high agility maneuvering performance under the autonomous
driving control with the motion planner. We are currently ex-
tending the control design to conduct more tests on different
surface conditions. Integration of the motion planner into the
real-time control system design is another ongoing research
effort.
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