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Abstract— Crack detection is essential for guaranteeing air-
port runway structural reliability. An efficient solution we take
is to employ a robot equipped with a camera to perform
inspection task. However, automatic crack detection for airport
runway is challenging, as the runway surface is seriously
polluted by fuel stain and aircraft wheel mark, and the cracks
need to be detected are usually extremely thin. Thus, we propose
a CNN model, AggCrack, to perform the crack detection
task. AggCrack adopts an innovative semantic-level attention
mechanism on the edges of the targets to focus the model on
crucial features, and combines edge information and semantic
segmentation for more accurate crack detection. We have
implemented the algorithm and have it extensively tested on an
airport runway dataset collected by our inspection robot from
four different airport runways. Compared with four existing
deep learning methods, experimental results show that our
algorithm outperforms all counterparts. Specifically, it achieves
the Precision, Recall and F1-measure at 84.24%, 70.36% and
76.68%, respectively.

I. INTRODUCTION

Airport runway is among the most fundamental infrastruc-
ture to guarantee the safety of aircraft during taking-off and
landing. Cracks are common defects occurring on airport
runway, which may decrease the stress state of runway
pavement and even lead to accidents. Thus, detection of
cracks is a mandatory provision according to the regulations
on airport pavement management issued by the Interna-
tional Civil Aviation Organization (ICAO). Currently, crack
detection for airport runway still relies on manual visual
inspection, which is time-consuming, labor-intensive, and
error-prone. Therefore, it is necessary to automate the crack
detection process. To achieve it, we develop a robot equipped
with an on-board RGB camera to perform airport runway
inspection, as shown in Fig.1, where the robot moves along
a pre-defined grid route to capture runway images. However,
automatic crack detection from the captured images is still
challenging, as the runway surface is seriously polluted by
fuel stain and aircraft wheel mark, and the cracks need
to be detected are usually extremely thin, because the thin
cracks may be early warning signs of significant failure. Fig.1
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Fig. 1. An illustration to our airport runway inspection robot and the
captured runway pavement images with strong background noise.

presents samples of very noisy images including extremely
thin cracks, fuel stains, and textured surface.

Traditional crack detection methods exploit the continuous
characteristic of cracks to develop local image processing
algorithms, such as intensity thresholding, edge detection
based techniques, and morphological methods. However,
their performance usually depends on the parameter choice
with extensive manual tuning, which limits their performance
in field applications. In recent years, machine learning,
especially deep learning approaches have been proposed and
achieved impressive performance for automatic crack detec-
tion. However, their performance degrades significantly when
dealing with the airport runway scenario with significant
background noise.

We observe that cracks have fewer internal features than
common targets, but edge features still have relatively strong
response to cracks even under the condition with significant
noises. This inspires us to find the way to improve the
model’s attention on edges, which may be disjointed and
even contain much noise, for crack detection. As a result,
we propose an aggregated attention CNN model, AggCrack,
to take the leverage of the attention on edges to detect cracks
more accurately and robustly.

We have evaluated our approach on a camera image data
set collected from four airport runways using our inspection
robot. Comparative results show that our proposed AggCrack
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outperforms four recent deep learning based crack detection
methods. Specifically, our algorithm achieves the Precision,
Recall and F1-measure at 84.24%, 70.36% and 76.68%,
respectively.

II. RELATED WORKS

The image-based automatic crack detection algorithms can
be generally divided into two categories: traditional image
processing methods, and machine learning based methods.

A. Traditional Image Processing Methods

With perspective of data analysis domain, the traditional
image-based crack detection methods can be classified into
two types: spatial domain analysis, and frequency domain
analysis.

1) Crack detection based on spatial domain analysis:
Intensity thresholding methods have been widely used due
to simplicity. Intuitively, cracks are darker then surrounding
background. Li et al. [1] employ nearby region to generate
the gray histogram to distinguish. However, these methods
are sensitive to noise, leading to being rarely used alone in
practical applications.

Morphological methods leverage the connectivity among
crack pixels. Nguyen et al. [2] propose Free-Form
Anisotropy, which takes into account brightness and connec-
tivity for crack detection simultaneously. In this category, our
group [3] proposes a multi-scale image fusion crack detection
method. The common problem to morphological methods is
that their performance usually depend upon the parameter
choice with manual extensive tuning, which limits their usage
in field applications.

Edge detection methods are also applied to detect cracks
[4], [5], since cracks and edges have similar characteristics in
shape, structure and thickness. However, the main problem is
that edge detection methods can only detect a set of disjoint
crack fragments and often fail in high-clutter images. How
to leverage edge information efficiently for crack detection
is an open issue.

2) Crack detection based on frequency domain analysis:
Wavelet transform methods have been applied for crack de-
tection. Zhou et al. [6] decompose a whole pavement image
into different-frequency sub-bands with wavelet transform.
Specifically, pavement cracks are transformed into high-
frequency wavelet coefficients while noise is transformed
into low-frequency ones. Besides, the details of both cracks
and noise in high-frequency sub-bands are preserved. How-
ever, it is difficult to apply wavelet transform to detect cracks
in poor continuity due to the anisotropic characteristic of
wavelets.

B. Machine Learning based Methods

Liu et al. [7] propose Richer Convolutional Features (RCF)
to produce high-quality edges efficiently by combining multi-
scale and multi-level information of objects. However, these
algorithms are still based on the human-selected features,

which have weak adaptability and poor robustness in com-
plex environments.

In recent years, Convolutional Neural Networks (CNNs)
are widely applied to solve the problem of automatic crack
detection. Chen et al. [8] classify the crack patches of the
nuclear power plant from video sequences by an eleven-
layer CNN, and the Naive Bayes approach is introduced
for post-processing the data. However, these methods above
only operate at patch-level, which leads to a tremendous
amount of detection time. The recent researches of pixel-
level semantic segmentation show a couple of great results.
Yang et al. [9] use a Fully Convolutional Network (FCN)
to detect cracks while quantitatively measuring their spatial
characteristics. Yang et al. [10] extend the HED [11] network
to the Feature Pyramid and Hierarchical Boosting Network
(FPHBN) for pavement crack detection. Lau et al. [12] use
a U-Net [13] architecture with pertained ResNet-34 [14]
encoder for end-to-end pavement crack detection. Although
the deep learning based methods have achieved impressive
performance for automatic crack detection, their performance
degrades significantly when dealing with the airport runway
scenario with strong interference.

III. ALGORITHM

Considering the challenging airport runway environment,
a potential solution to deal with the pavement pollution is
to raise the model’s attention on edges, which are more
prominent than internal features of cracks. Thus, we propose
a CNN model, AggCrack, to process the collected runway
images, as shown in Fig.2. First, the image goes through a
feature extractor to generate pyramid features in five different
scales. Feature maps of each scale are reused to preserve
details in the expansive paths. After the feature extractor,
two parallel branches of expansion module are implemented.
Among them, one is set to focus the model on edges, and
the other is set to generate initial crack semantics prediction
maps. Finally, a fusion module is implemented to achieve
more accurate crack detection results by combining crack
semantic information and edge features. In this section, we
will introduce each module of AggCrack in detail.

A. Feature Extractor

We analyze the prevalent semantic segmentation methods
such as FCN, DeepLabV3 and U-Net both in theory and
experiment, and find that U-Net has advantages in crack
detection. Compared with the other networks, U-Net adopts
a more conservative convolution strategy, but it is conducive
to extracting detailed features from thin cracks. Moreover,
U-Net is designed for retinal vessels segmentation, which
have similar characteristics to cracks in shape and structure.
Thus, we select U-Net as our backbone to extract features
for crack detection.

Inspired by similar VGG [15] network, we build the
feature extractor for following crack semantic segmentation
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Fig. 2. Architecture of the proposed AggCrack model.

branch and edge attention branch. The feature extractor con-
sists of 4 modules, and generates 5 feature maps in different
scales. Each module of the feature extractor consists of 2 con-
volution layers and 1 maxpooling layer. In addition, batch-
normalization and ReLU activation function are applied after
each convolution layer, and they dramatically relief the case
that large areas of noises overwhelm cracks which have
much fewer pixels. Before maxpooling, the feature maps
are output for shortcuts. After each module, the feature
maps downsample in half scale, but double the channels for
richer semantic features. Besides, the feature extractor with
4 downsampling layers ensures enough receptive field. The
feature maps obtained by the extractor are fed into following
two branches, respectively.

B. Edge Attention Branch
Edge features have relatively strong response when the

cracks are seriously polluted by noises, and they are more
prominent than internal features of cracks. In the process
of image annotation, it is important to pay more attention
to accurately identify the edges of targets, especially for the
crack-like thin objects. However, the final annotation fills the
target regions, which makes the edge information become
weak for the model training.

In order to solve this problem, we build an edge attention
branch to preserve the edge information for the following
crack detection. It consists of 4 expansive modules to re-
construct the edges of target, and each module of the branch
consists of 2 convolution layers and 1 transposed convolution
layer. Besides, each expansive module takes feature map
from shortcut as the supplement. Then, the branch employs
sigmoid function to output a probability map.

The labels for edge attention are converted from the
trajectories of manual annotations, and the trajectories are
drawn in binary images.

The final probability map and the preceding feature maps
are fed into the fusion module for more accurate crack
detection.

C. Semantic Segmentation Branch

By observing the collected images, we notice that some
cracks have similar characteristic with fuel stain and
scratches in shape and texture, but the cracks are still
demarcated by edges. Thus, the images are processed by
semantic segmentation branch in advance, to output a pre-
liminary segmentation result. Then, the feature maps from
edge attention branch are fused into the segmentation result
to complete crack detection.

In general, the architecture of expansive path in semantic
segmentation branch is similar to the edge attention branch.
The difference is that the segmentation branch is supervised
by segmentation labels. In practice, we find that even human
annotations have inevitable deviations. To accommodate the
deviations, the labels are processed for 2 pixels tolerance.

D. Fusion Fine-tune Module

Considering that the single probability map given by edge
attention branch are not rich enough to establish the relevance
between edges and segmentation, the adjacent preceding
feature maps are also fused by concatenating them. Thus, the
fusion module takes the feature maps from the edge attention
branch and the preceding preliminary segmentation branch,
to generate the final detection results. In the AggCrack,
we adopt a compact fusion fine-tune module for the reason
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that segmentation regions are close to the crack edges. The
fusion fine-tune module adopted in AggCrack consists of
two consecutive convolution layers, and it is assigned to fill
the edges and balance segmentation result, to connect the
scattered cracks and confirm boundary.

E. Loss Function

The AggCrack outputs one-channel probability maps in
each branch and the fusion module, and these probability
maps have the same size of input image. Also, the total loss
is summed by the three of them.

Value 1 indicates cracks or edges. Relatively, background
is presented as value 0. With previously defined outputs,
improved binary cross-entropy loss is used for calculating the
distance between output and label, respectively. Considering
the proportion of crack and edge pixels to background pixels
is extremely small, and they are difficult to be identified,
Focal Loss [16] is implemented to solve the unbalance
between them. Essentially, the pixel-wise loss is formulated
as

FL(yi, ŷi) = −
{

αt(1− ŷi)
γ log ŷi yi = 1

(1− αt)ŷi
γ log(1− ŷi) yi = 0

(1)

where i means the corresponding i-th pixel of the label and
the output. ŷi denotes the probability of being a crack pixel,
yi correspondingly denotes the label of input image. And
both yi and ŷi range in [0, 1], where 0 denotes background
and 1 denotes target. And (1− ŷi)

γ and ŷiγ give the loss a
motive that makes the model learn to classify difficult targets.
αt denotes the weights for balancing background and targets,
it alleviates the extreme imbalance caused by the gamma
term.

IV. EXPERIMENTS

We have evaluated the AggCrack on a representative
dataset collected by our inspection robot from civil avia-
tion airports. To validate the superiority of the proposed
algorithm, we have compared it with four state-of-the-art
methods. Furthermore, ablation studies have been performed
to evaluate the effectiveness of the different strategies.

A. Robotic Crack Detection System

We designed a robot equipped with various sensors to
perform surface inspection task and underground defects
detection. And it captures images with a Genie Nano M1920
Mono camera fixed on the inspection robot, as shown in
Fig.1. The camera is installed downward, keeping the optical
axis of the sensor to be perpendicular to the airport runway,
and its resolution is set to 1800 × 900. Note that since we
have to perform inspection during the night when the airport
is closed, a LED area array lighting system is used on our
robot.

B. Dataset

The dataset, named as APD, is collected by our inspection
robot from four different airport runways. During inspection,
the robot navigates within a predefined region along a grid
route to collect images, as shown in Fig.1. When scanning,
the robot transfers the camera images to the nearby data
analysis center in a van using 4G/5G connection. Then the
collected data will be automatically analyzed off-line.

We select 2000 typical images with cracks for APD dataset
from more than a hundred thousand images initially captured.
The resolution of images is 1800 × 900 pixels. The ground
truth of cracks are labeled manually by two different experts
individually. Cracks in APD dataset are generally extremely
thin, some are even only one-pixel width. Corresponding to
the real world, the cracks in APD dataset are even less than
1mm wide, and they are distributed from 0.5mm to 2cm.
Due to the serious pollution by fuel stain and aircraft wheel
mark, this dataset is quite challenging.

APD dataset has been randomly divided into training and
test sets with a ratio of 7:3. So, there are 1400 images
for training AggCrack and other comparison models, 600
images for test. With the dataset ready, we now discuss the
implementation details next.

C. Implementation Details

We have implemented our AggCrack algorithm with the
deep learning framework PyTorch. The convolution layers
use 3 × 3 kernels and pad 1 pixel. The weights of all the
convolution layers are initiated by kaiming uniform [17]. The
maxpooling layers use 2 × 2 kernels and stride 2 to reduce
the size of feature maps. The transposed convolution layers
are set as 2×2 kernels and stride 2 correspondingly. Adam is
implemented to optimize the models. ReLU is the first choice
for the non-linear activation. Furthermore, LeakyReLU is
tested in the following ablation studies.

All the experiments are run on a GeForce RTX 3090 GPU.
Considering the GPU RAM limitation, the images are mirror
padded to a multiple of 512 in width and height. Then,
each image is cut into several sub-image with resolution
of 512 × 512 pixels, which will be fed into the AggCrack
model. In the practice of training, the images are augmented
with rotating in 90, 180, 270 degrees and flipping in horizon
and vertical. The initial learning rate is set to be 0.001. The
model is trained from scratch, and if there is no performance
improvement, the training will stop after 10 epochs. Usually,
the model is trained for about 20 epochs. In the inference
stage, the probability maps are affirmed into 0 and 1 with
the threshold being 0.5.

D. Compared Methods and Evaluation Metrics

To evaluate the performance of the AggCrack, we com-
pare it with four state-of-the-art deep learning based crack
detection algorithms, including:
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Fig. 3. Examples results of different algorithms on APD dataset.

• U-Net [13]. U-Net performs skip connections for lower
feature fusion, which gives a result with fine boundary
on retinal vessel segmentation.

• FCN [18]. Fully Convolutional Networks for Seman-
tic Segmentation (FCN) implements multi-scale feature
map upsampling for accurate segmentation.

• DeepLabV3 [19]. DeepLabV3 employs atrous convolu-
tion in cascade to boost the performance of segmenta-
tion.

• DeepCrack [20]. DeepCrack employs deep supervision
from lower feature maps to higher feature maps, and
gives an accurate crack segmentation.

To evaluate the performances of them quantitatively, three
common metrics, including Precision, Recall and F1-
measure, are employed. Considering acquiring an exactly
the same prediction map as the ground truth is difficult for
a image of resolution of 1800 × 900, we allow two pixels
deviation as the tolerance for the metrics.

E. Results on APD dataset

We test the AggCrack with its counterparts listed above
on APD dataset. And the results are summarized in Tab.I,
where the results of all compared methods are obtained
using their respective open source codes. Fig.3 presents
representative images and their detection results where we
can find the images in APD dataset are quite challenging.
From the experiment results, the AggCrack outperforms all

counterparts in overall performance. Although DeepCrack
achieves the best performance on precision benefiting from
its supervision by multi-scale feature maps, its recall is quite
low, which indicates the probability of missed detection is
high. For airport runway inspection task, it is obvious that
the higher recall value is desired, because any missed cracks
are potential risks for aircraft safety. Our AggCrack model
achieves 4.74% lower than DeepCrack on precision, but
14.56% higher on recall. Compared with the FCN model,
our network takes two convolution layers in each expansive
module, which results in better precision, as the expansive
module has the process of adjusting the reconstruction. In
practice of training DeepLabV3, we find that the atrous
convolution is not well fitted in the crack detection task. One
possible reason is that the offset of atrous convolution may
not fall into the target regions correctly due to the thinness of
cracks. In terms of computing consumption, AggCrack runs
in 2.67 FPS on one RTX 2080Ti, which satisfy the needs of
the robot inspection task.

F. Ablation Studies

We conduct extensive ablation experiments to analyze the
effectiveness of our design choice in AggCrack. Tab.II shows
the effects of different functions on the AggCrack model,
where ‘w/o’ indicates that the corresponding function is
removed from the model, and ‘w/’ means that the function
is adopted to replace the original operation.
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TABLE I
CRACK DETECTION RESULTS ON APD DATASET.

Method Precision Recall F1-measure
FCN 76.85% 69.48% 72.98%

DeepLabV3 83.58% 61.51% 70.87%
U-Net 83.28% 67.60% 74.62%

DeepCrack 88.98% 55.80% 68.59%
AggCrack 84.24% 70.36% 76.68%

TABLE II
ABLATION STUDIES ON MODULES FROM AGGCRACK.

Method Precision Recall F1-measure
AggCrack 84.24% 70.36% 76.68%
w/o fusion fine-tune 87.98% 63.94% 74.06%
w/ stride conv 87.46% 62.86% 73.15%
w/ LeakyReLU 85.92% 63.32% 72.91%
w/ stride conv and LeakyReLU 92.15% 56.61% 70.14%

First, we remove the fusion fine-tune module to find out if
the module can directly use the feature maps generated from
edge attention branch. Tab.II shows that the model achieves
higher precision. A reasonable explanation is that the model
makes an intersection over the segmentation and edge rather
than takes leverage of edges for better segmentation. Second,
considering that the maxpooling may lead to the loss of
some insignificant features of cracks, we adopt the stride
convolution to learn a better self-adaption pooling. The result
indicates that it makes the model tend to extract significant
features rather than get sufficient features. Then, we notice
that the ordinary ReLU activation function leads to more dy-
ing neurons, which causes gradient instability in the training
stage. As shown in Tab.II, the LeakyReLU has no significant
improvement on the AggCrack model, and even decrease the
recall, but accelerate training by 10× faster, which converges
in 2 epochs. Relatively, AggCrack usually converges at 20
epochs without LeakyReLU. Finally, we have implemented
both stride convolution and LeakyReLU on AggCrack, and
the precision comes to 92.15% unprecedentedly, but the cost
is the significant decrease of recall.

V. CONCLUSION AND FUTURE WORK

We proposed an aggregated attention CNN model, Ag-
gCrack, to detect cracks automatically for the robotic in-
spection of airport runway. Our AggCrack novelly proposes
the semantic-level attention mechanism to leverage the edge
information to combine with crack semantic information to
robustly find cracks even in the presence of significant noise
level. We extensively tested our algorithm with real airport
runway data collected from four different airport runways.
The comparative results demonstrated that the AggCrack
can effectively detect the airport runway cracks and had
outperformed the state-of-the-art techniques.

In the future, we plan to fuse the 2D camera images with
3D laser ranger finder inputs to further improve the detection
performance.

REFERENCES

[1] Q. Li and X. Liu, “Novel approach to pavement image segmentation
based on neighboring difference histogram method,” in 2008 Congress
on Image and Signal Processing, vol. 2, pp. 792–796, IEEE, 2008.

[2] M. Avila, S. Begot, F. Duculty, and T. S. Nguyen, “2d image based
road pavement crack detection by calculating minimal paths and
dynamic programming,” in 2014 IEEE International Conference on
Image Processing (ICIP), pp. 783–787, IEEE, 2014.

[3] H. Li, D. Song, Y. Liu, and B. Li, “Automatic pavement crack detec-
tion by multi-scale image fusion,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 6, pp. 2025–2036, 2018.

[4] R. S. Lim, H. M. La, Z. Shan, and W. Sheng, “Developing a crack
inspection robot for bridge maintenance,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pp. 6288–6293,
IEEE, 2011.

[5] R. S. Lim, H. M. La, and W. Sheng, “A robotic crack inspection and
mapping system for bridge deck maintenance,” IEEE Transactions on
Automation Science and Engineering, vol. 11, no. 2, pp. 367–378,
2014.

[6] J. Zhou, P. S. Huang, and F.-P. Chiang, “Wavelet-based pavement
distress detection and evaluation,” Optical Engineering, vol. 45, no. 2,
p. 027007, 2006.

[7] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer con-
volutional features for edge detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3000–
3009, 2017.

[8] F.-C. Chen and M. R. Jahanshahi, “Nb-cnn: Deep learning-based crack
detection using convolutional neural network and naı̈ve bayes data
fusion,” IEEE Transactions on Industrial Electronics, vol. 65, no. 5,
pp. 4392–4400, 2017.

[9] X. Yang, H. Li, Y. Yu, X. Luo, T. Huang, and X. Yang, “Automatic
pixel-level crack detection and measurement using fully convolu-
tional network,” Computer-Aided Civil and Infrastructure Engineering,
vol. 33, no. 12, pp. 1090–1109, 2018.

[10] F. Yang, L. Zhang, S. Yu, D. Prokhorov, X. Mei, and H. Ling,
“Feature pyramid and hierarchical boosting network for pavement
crack detection,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 4, pp. 1525–1535, 2019.

[11] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proceedings
of the IEEE international conference on computer vision, pp. 1395–
1403, 2015.

[12] S. L. Lau, E. K. Chong, X. Yang, and X. Wang, “Automated pavement
crack segmentation using u-net-based convolutional neural network,”
IEEE Access, vol. 8, pp. 114892–114899, 2020.

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention,
pp. 234–241, Springer, 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770–778, 2016.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[16] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, pp. 2980–2988, 2017.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

[18] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3431–3440, 2015.

[19] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017.

[20] Q. Zou, Z. Zhang, Q. Li, X. Qi, Q. Wang, and S. Wang, “Deepcrack:
Learning hierarchical convolutional features for crack detection,” IEEE
Transactions on Image Processing, vol. 28, no. 3, pp. 1498–1512,
2018.

6


