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Autonomous Motorcycles for Agile Maneuvers, Part I: Dynamic
Modeling

Jingang Yi, Yizhai Zhang, and Dezhen Song

Abstract— Single-track vehicles, such as motorcycles, provide
an agile mobile platform. Modeling and control of motorcycles
for agile maneuvers, such as those by professional racing riders,
are challenging due to motorcycle’s unstable platform and
complex tire/road interaction. As a first step attempting to
understand how racing riders drive a motorcycle, in this two-
part paper we present a modeling and tracking control design of
an autonomous motorcycle. In this first-part paper, we discuss
a new dynamics model for the autonomous motorcycle. We
consider the existence of lateral sliding velocity at each wheel
contact point. Because of the importance of the tire/road inter-
action for vehicle stability and maneuverability, the dynamic
modeling scheme also includes the motorcycle tire models. The
new nonlinear dynamic models are used for control systems
design in the companion paper with control input variables
are the front wheel steering angle and the angular velocities of
front and rear wheels.

NOMENCLATURE

X,Y,Z A ground-fixed coordinate system.
x, y, z A wheel-base line moving coordinate system.
xw, yw, zw A front wheel plane coordinate system.
xB , yB , zB A rear frame body coordinate system.
C1, C2 Front and rear wheel contact points on the

ground.
Ffx, Ffy, Ffz The front wheel contact forces in the x, y, z-

axis directions.
Frx, Fry, Frz The rear wheel contact forces in the x, y, z

directions.
vf ,vr Velocity vectors of the front and rear wheel

contact points, respectively.
vfx, vfy Front wheel contact point C1 velocities along

the x- and y-axis directions, respectively.
vrx, vry Rear wheel contact point C2 velocities along

the x- and y-axis directions, respectively.
vfxw

, vfyw
Front wheel contact point C1 velocities along
the xw- and yw-axis directions, respectively.

vX , vY Rear wheel contact point C2 velocities along
the X- and Y -axis directions, respectively.

ωf , ωr Wheel angular velocities of the front and rear
wheels, respectively.
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vG Velocity vector of the motorcycle frame (with
rear wheel set).

γf , γr Slip angles of the front and rear wheels,
respectively.

λf , λr Longitudinal slip values of the front and rear
wheels, respectively.

ϕ,ψ Rear frame roll and yaw angles, respectively.
ϕf The front steering wheel plane camber angle.
φ Motorcycle steering angle.
φg Motorcycle kinematic steering angle (pro-

jected steering angle on the ground plane).
σ The front kinematic steering angle variable.
m The total mass of the motorcycle rear frame

and wheel.
Js The mass moment of rotation of the steering

fork (with the front wheel set) about its rota-
tion axis.

l Motorcycle wheel base, i.e., distance between
C1 and C2.

lt The front steering wheel trail.
h The height of the motorcycle center of mass.
r The front and rear wheel radius.
δ The rear frame rotation angle from its vertical

position.
ξ The front steering axis caster angle.
R The radius of the trajectory of point C2 under

neutral steering turns.
Cd The aerodynamics drag coefficient.
kλ, kγ , kϕ Longitudinal, lateral, and camber stiffness co-

efficients of motorcycle tires, respectively.
L(Lc) The (constrained) Lagrangian of the motorcy-

cle systems.

I. INTRODUCTION

Single-track vehicles, such as motorcycles and bicycles,
have high maneuverability and strong off-road capabilities.
In environments such as deserts, forests, and mountains,
mobility of single-track vehicles significantly outperforms
that of double-track vehicles. The recent demonstration of
the Blue Team’s autonomous motorcycle (Fig. 1(a)) in the
2005 DARPA Grand Challenge autonomous ground vehicles
competition has shown an example of the high-agility of the
single-track platform [1].

Although the extensive study of the motorcycle dynamics
have revealed some knowledge of motorcycle platform under
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steady motions, however, modeling and control of motorcy-
cles for agile maneuvers, such as those by professional racing
riders, still remains a challenging task due to motorcycle’s
intrinsic unstable platform and complex tire/road interaction.
Professional motorcycle riders can leverage the safety limits
of the tire/road interaction, and maintain the vehicles at high
performance while preserving safety. Understanding how
human drivers carry out these maneuvers not only advances
our knowledge in vehicle dynamics and control, but also can
be used for enhancing vehicle safety, such as designing new
driver assistance systems, for example, emergency obstacle
avoidance maneuvers.

(a) (b)

Fig. 1. (a) The Blue team autonomous motorcycle. (b) A Rutgers
autonomous pocket bike.

As a first step towards to to understand such high-
performance capabilities of the human drivers, and then de-
sign human-inspired control algorithms for agile maneuvers,
the objective of this two-part paper is to develop a new
modeling and control scheme for an autonomous motorcycle.
Comparing with existing study on the motorcycle dynamics
and control, the main contribution of this study is the
new modeling and control system design with integrated
motorcycle dynamics with tire/road interaction. First, we do
not enforce a zero lateral velocity nonholonomic constraint
for the wheel contact points of the motorcycle system. Such
nonholonomic constraints are not realistic for high-fidelity
vehicle modeling [2]. Second, we explicitly consider the
tire/road interaction for designing control algorithms because
of the importance of the tire/road interaction on motorcycle
dynamics. To our knowledge, there is no study that explicitly
considers such kinds of tire dynamics into the motorcycle
control system design. Based on the new dynamics, in our
companion paper [3], we extend the control system design
in [4], [5] for trajectory following maneuvers.

The remainder of the paper is organized as follows. We
review some related work in Section II. In Section III,
we discuss dynamic modeling of a riderless motorcycle. In
Section IV, we present a motorcycle tire dynamics model
and then integrate the tire dynamics with the motorcycle
dynamics. Finally, we conclude the paper in Section V.

II. RELATED WORK

Mathematically modeling of a bicycle or a motorcycle
has been an active research area for many years. Although
some modeling differences have been discussed in [2], from
control system design aspects, we consider bicycles and mo-
torcycles are similar, and hence do not explicitly distinguish

them. There is a large body of work that studies motorcycle
stability and dynamics, and readers can refer to two recent re-
view papers: one from a historical development viewpoint [2]
and the other from a control-oriented perspective [6].

The modeling work can be considered as two groups [6]: a
simple inverted pendulum model and a multi-body dynamic
model. For example, some simple second-order dynamic
models are presented in [7] to study the balance stability of
a bicycle. Several researchers have studied the motorcycle
dynamics using multi-body dynamics [8]–[11]. The model
developed in [9] is very comprehensive and contains various
vehicle components. The model has been implemented in
a simulation package called FastBike for the purposes of
real-time simulations. Multi-body dynamics models are not
suitable for the control system design due to their complexity
while a inverted-pendulum model overly simplify the prob-
lem and does not capture all of the dynamics and geometric
characteristics.

In [4], [12], mathematical models of a motorcycle are
discussed using (constrained) Lagrange’s equations. In [13],
experimental study of the motorcycle handling is compared
with the mathematical dynamics model of a motorcycle with
the rider. Stability and steering characteristics of a motor-
cycle are typically discussed using a linearization approach
with a consideration of a constant velocity [2], [6], [8], [14]–
[17]. A non-minimum phase property (unstable poles and
zeros in motorcycle dynamics) in these analyses explains
the counter-steering phenomena and other steering stability
observations. In [14], it is also demonstrated experimentally
the in-significance of the gyroscopic effect of the front wheel.

The concept of an autonomous bicycle without a rider
has been proposed by several researchers [1], [4], [5], [18]–
[21]. In this two-part paper, we extend the modeling and
control design in [4], [5]. For the modeling part, we take a
constrained Lagrangian approach to capture the nonlinear dy-
namics of a motorcycle. Besides the consideration of control-
oriented modeling approach that captures the fundamental
properties of the motorcycle platform with a manageable
complexity, several new features have been adopted and
developed. First, we relax the zero lateral velocity of the
wheel contact points and therefore allow wheel sliding in the
models, which provides more realistic vehicle modeling [2].
Second, we explicitly consider the tire/road interaction for
designing control algorithms because of the importance of
the tire/road interaction on motorcycle dynamics [22]. The
study in [23] is probably the closest work to ours. The
authors in [23] employ a nonholonomic motorcycle dynamics
and focus on the performance and maneuverability analysis
of motorcycles using the automotive tire/road interaction
characteristics.

III. MOTORCYCLE DYNAMICS

Fig. 1(b) shows the Rutgers autonomous motorcycle pro-
totype. The motorcycle is rear-wheel driving. Steering and
velocity control are considered as control inputs for the
riderless autonomous motorcycle. We do not consider the
weight shifting as one actuation mechanism as human drivers
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because the Blue Team motorcycle has previously demon-
strated an effective maneuverability only through vehicle
steering and velocity control [1].

A. Geometry and kinematics relationships

The riderless motorcycle is considered as as a two-part
platform: a rear frame and a steering mechanism. Fig. 2(a)
shows a schematic of the vehicle. We consider the following
modeling assumptions: (1) the wheel/ground is a point con-
tact and thickness and geometry of the motorcycle tire are
neglected; (2) The motorcycle body frame is considered a
point mass; and (3) the motorcycle moves on a flat plane and
vertical motion is neglected, namely, no suspension motion.

We denote C1 and C2 as the front and rear wheel
point points with the ground, respectively. As illustrated in
Fig. 2(a), three coordinate systems are used: the navigation
frame N (X,Y,Z-axis fixed on the ground), the wheel
base moving frame (x, y, z-axis fixed along line C1C2), and
the rear body frame B (xB, yB , zB-axis fixed on the rear
frame). For the frame B, we use (3-1-2) Euler angles and
represent the motion by the yaw angle ψ and roll angle ϕ. We
denote the unit vector sets for the three coordinate systems
as (I,J ,K), (i, j,k), and (iB , jB ,kB), respectively. It is
straightforward to obtain that⎡
⎣iB

jB
kB

⎤
⎦ =

[
1 0
0 R(ϕ)

]⎡⎣i
j
k

⎤
⎦ =

[
1 0
0 R(ϕ)

] [
R(ψ) 0

0 1

]⎡⎣ I
J
K

⎤
⎦

=

⎡
⎣ cψ sψ 0
− cϕ sψ cϕ cψ sϕ
sϕ sψ − sϕ cψ cϕ

⎤
⎦
⎡
⎣ I

J
K

⎤
⎦ , (1)

where the rotation matrix

R(x) =
[

cx sx
− sx cx

]
and cx := cosx, sx := sinx for angle x.

We consider the trajectory of the rear wheel contact point
C2, denoted by its coordinates (X,Y ) in N , as the motorcy-
cle position. The orientation of the coordinate systems and
the positive directions for angles and velocities follow the
conversion of the SAE standard [17].

We consider the instantaneous rotation center of the mo-
torcycle motion on the horizontal plane. Let Or denote
the instantaneous rotation center and O′

r denote the neutral
instantaneous rotation center which is the intersection point
of the perpendicular lines of the front and rear wheel planes;
see Fig. 2. Under the neutral turning condition [10], the slip
angles of the front and rear wheels are the same, that is,
λf = λr, and then the rotation center angles for Or and
O′
r are equal to the kinematic steering angle φg, namely,

α = α′ = φg . Let R denote the instantaneous radius of the
trajectory of point C2 under neutral turning conditions. We
define σ as the kinematic steering variable as

σ := tanφg =
l

R
. (2)

From the geometry of the front wheel steering mecha-
nism [10], we find the following relationship,

tanφg cϕ = tanφ cξ . (3)

If we assume a small roll and steering angles, then from (3)
we obtain an approximation

σ̇ cϕ = φ̇ cξ . (4)

O
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φ

φg
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O
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Fig. 2. A picture of the Blue team autonomous motorcycle [1].

The motion of the motorcycle on the XY plane can be
captured by the generalized coordinates (X,Y, ψ, ϕ, σ). Note
that the use of variable σ is to capture the steering impact
on the motorcycle dynamics. The nonholonomic constraint
of the rear wheel and the motion trajectory geometry imply
the yaw kinematics equality

vrx = Rψ̇ =
l

σ
ψ̇ . (5)

From a differential geometry viewpoint 1, we can partition

1We here take a description of the base-fiber structure of nonholonomic
dynamical systems with symmetry in [24].
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the generalized velocities of the motorcycle as base velocities
ṙ = [ϕ̇, vrx, vry, σ̇]T and fiber velocities ṡ = ψ̇. We then
write the constraints in (5) simply as

ṡ +A(r, s)ṙ = 0, (6)

where A(r, s) =
[
0 −σ

l 0 0
]
.

Due to the steering mechanism and caster angle, the height
of the mass center of gravity of the motorcycle is changing
under steering. As shown in Fig. 2(b), the height change
ΔhG of the center of gravity G due to the steering action
can be calculated as [5]

ΔhG = δb sϕ ≈ bltσ cξ
l

sϕ , (7)

where we use a small angle approximation σ ≈ φg from the
relationship (2).

Remark 1: In [4], [23], the steering axis is assumed to be
vertical. This assumption simplifies the motorcycle dynamics
and neglects a significant geometric stabilization mechanism,
which is the “motorcycle trail” (denoted as lt in Fig. 2(a))
discussed in [7], [10], [14], [15]. The resulting model of
the motorcycle dynamics cannot capture the influence of the
steering angle φ on the roll dynamics when vrx = 0. Namely,
one cannot use steering to stabilize the motorcycle. Such an
observation is also pointed out in [6].

Given the roll angle ϕ and the steering angle φ, the camber
angle of the front wheel can be approximated as [10]

ϕf = ϕ+ φ sξ . (8)

We consider the relationship between velocities of the rear
wheel contact point C2 and the front wheel center O1. We
write the position vector rO1 = rC2 + ρC2O1

, where rC2 is
the position vector of point C2 and ρC2O1

= liB − rkB =
li + r sϕ j − r cϕ k is the relative position vector of G. The
angular velocity of the rear frame is represented as ω =
ϕ̇i + ψ̇k. Thus, we obtain

vO1 = ṙC2 + ω × ρC2O1
= (vrx − rψ̇ sϕ)i +

(vry + lψ̇ + rϕ̇ cϕ)j + rϕ̇ sϕ k. (9)

B. Motorcycle dynamics

We use the constrained Lagrangian method in [24] to
obtain the dynamics equation of the motion of the riderless
motorcycle. We consider the motorcycle as two parts: one
rear frame with mass m and one steering mechanism with
the mass moment of inertia Js. The Lagrangian L of the
motorcycle is calculated as

L =
1
2
Jsφ̇

2 +
1
2
mvG · vG −mg (h cϕ−ΔhG) (10)

To calculate the mass center velocity, we take a similar
approach as in (9) and obtain

vG = (vrx − hψ̇ sϕ)i + (vry + bψ̇ + hϕ̇ cϕ)j + hϕ̇ sϕ k.

Plugging the above equations and (4)-(7) into (10), we
obtain

L =
Js
2 c2

ξ

σ̇2 +
1
2
m
[
(vrx − hψ̇ sϕ)2 + (vry + bψ̇ + hϕ̇ cϕ)2 +

h2ϕ̇2 s2ϕ
]−mg

(
h cϕ−blt cξ

l
σ sϕ

)
. (11)

Incorporating the constraints (6), we obtain the constrained
Lagrangian Lc as 2

Lc =
Js
2 c2

ξ

c2
ϕ σ̇

2 +
1
2
m

{[(
1 − h

l
σ sϕ

)2

+
b2

l2
σ2

]
v2
rx

+v2
ry +

2b
l
σvrxvry +

2bh
l

cϕ σϕ̇vrx + 2h cϕ ϕ̇vry

+h2ϕ̇2

}
−mg

(
h cϕ−blt cξ

l
σ sϕ

)
. (12)

The moment Ms on the rotating axis is obtained as

Ms =
lt√

1 + (lt/r)
2

(
Ffy cϕf

−Ffz sϕf

)
. (13)

The detailed calculation of (13) is given in Appendix I.
The equations of motion using the constrained Lagrangian

are obtained as [24] 3

d

dt

∂Lc
∂ṙi

− ∂Lc
∂ri

+Aki
∂Lc
∂sk

= − ∂L

∂ṡl
Clij ṙ

j+τ i, i, j = 1, . . . , 4,
(14)

where τ i are the external forces/torques, Aki is the element
of connection A(r, s) at the kth row and ith column, and
Clij denote the components of the curvature of A(r, s) as

Clij =
∂Ali
∂rj

− ∂Alj
∂ri

+Aki
∂Alj
∂sk

−Akj
∂Ali
∂sk

. (15)

From state variable σ, from (14), we obtain the steering
dynamics as

d

dt

(
Js
c2
ξ

c2
ϕ σ̇

)
− mgltb cξ

l
sϕ = τs +Ms . (16)

Considering a position feedback control of the steering angle
directly, we can reduce the dynamic equation (16) by a
kinematic steering system as

σ̇ = ωσ, (17)

where the input ωσ is considered as the virtual steering
velocity and given by dynamic extension

ω̇σ =
c2
ξ

Js c2
ϕ

(τs +Ms) − 2 tanϕϕ̇σ̇ +
mgltb c3

ξ

lJs
sϕ .

Similarly, we obtain the roll dynamics equation

bhσ

l
cϕ v̇rx + h cϕ v̇ry + h2ϕ̈+

(
1 − hσ

l
sϕ

)
hσ cϕ
l

v2
rx

−g
(
h sϕ +

ltb cξ
l

σ cϕ

)
= −bh

l
cϕ vrxωσ, (18)

2Readers can refer to [24] for the definition of the constrained Lagrangian
Lc and also Chapter 5 of [24] for the Lagrange-d’Alembert principle for
nonholonomic constrained dynamical systems.

3Here the summation convention is used where, for example, if s is of

dimension m, then Ak
i

∂Al
j

∂sk ≡ Σm
k=1Ak

i

∂Al
j

∂sk .
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longitudinal dynamics equation[(
1 − hσ

l
sϕ
)2

+
b2σ2

l2

]
v̇rx +

bσ

l
v̇ry +

bhσ

l
cϕ ϕ̈− 2

(
1 −

hσ

l
sϕ
)hσ
l

cϕ ϕ̇vrx − bhσ

l
sϕ ϕ̇2 = −

[
−2
(
1 − hσ

l
sϕ
)

h

l
sϕ vrx +

2b2σ
l2

vrx +
b

l
vry +

bh

l
cϕ ϕ̇

]
ωσ +

1
m
Frx −

1
m
√

1 + σ2
(Ffx + σFfy) − 1

m
Cdv

2
rx, (19)

and lateral dynamics equation

bσ

l
v̇rx+v̇ry + h cϕ ϕ̈− h sϕ ϕ̇2 = −bvrx

l
ωσ − 1

m
Fry

+
1

m
√

1 + σ2
(Ffy − σFfx) . (20)

In (19), Cd is the aerodynamic drag coefficient.
Let q̇ := [ϕ̇ vrx vry]T denote the generalized velocity

of the motorcycle and we rewrite the above dynamics equa-
tions (18)-(20) in a compact matrix form as

Mq̈ = Km + Bm

⎡
⎢⎢⎢⎢⎣
ωσ
Ffx
Ffy
Frx
Fry

⎤
⎥⎥⎥⎥⎦ , (21)

where matrices

M =
[
M11 M12

M21 M22

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h2 bhσ

l
cϕ h cϕ

bhσ

l
cϕ

(
1 − hσ

l
sϕ

)2

+
b2σ2

l2
bσ

l

h cϕ
bσ

l
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

Km =

⎡
⎢⎣ − (1 − hσ

l
sϕ
) hσ cϕ

l v2
rx + g

(
h sϕ + ltb cξ

l σ cϕ
)

2
(
1 − hσ

l
sϕ
)
hσ
l

cϕ ϕ̇vrx + bhσ
l

sϕ ϕ̇2 − 1
mCdv

2
rx

h sϕ ϕ̇2

⎤
⎥⎦ ,

and

Bm =

⎡
⎢⎣−

bh
l

cϕ vrx 0 0 0 0
Bω − 1

m
√

1+σ2 − σ
m

√
1+σ2

1
m 0

− bvrx

l − σ
m

√
1+σ2

1
m

√
1+σ2 0 − 1

m

⎤
⎥⎦ .

In the above matrix Bm,

Bω = 2
[(

1 − hσ

l
sϕ

)
h

l
sϕ−b

2σ

l2

]
vrx − b

l
vry − bh

l
cϕ ϕ̇.

It is clear that the control inputs in (17) and (21) are the
virtual steering velocity ωσ and the wheel traction/braking
forces F f and F r.

IV. TIRE DYNAMICS MODELS

In this section, we discuss how to capture the motorcycle
tire/road interaction. We particularly like to present a friction
forces modeling scheme for motorcycle dynamics (21).

A. Tire kinematics relationships

Fig. 3 illustrates the kinematics of the tire/road contact.
Let vc = vcxi + vcyj + vczk and vo = voxi + voyj + vozk
denote the velocities of the contact point and the wheel center
in the frame B, respectively. We define the longitudinal slip
ratio λs and lateral side slip ratio λγ , respectively, as

λs :=
vcx − rωw

vcx
, λγ := tan γ = −vcy

vcx
, (22)

where ωw is the wheel angular velocity.

C

O

ψ

ϕ

vc

vcx vcy γ
x

y

z

Fx

Fy

Fz

Fig. 3. Schematic of the tire kinematics.

For the front wheel, the camber angle is different (8), and
the velocity relationship between C1 and the wheel center
O1 in B is then

vfx = vfox + rψ̇ sϕ, vfcy = vfoy − rϕ̇f cϕ,
vfz = vfoz − rϕ̇f sϕ . (23)

Using the relationship (9) and (8), we simplify the above
velocity calculation and obtain

vfx = vrx, vfy = vry − rφ̇ sξ cϕ +lψ̇. (24)

From the side slip ratio (22) of the rear wheel, we have

λrγ = tan γr = −vry
vrx

= −vfy
vfx

− rφ̇ sξ cϕ−lψ̇
vrx

= tan γ′f −
r tan ξ c2

ϕ

vrx
ωσ + σ, (25)

where γ′f := φg−γf and tan γ′f = − vfy

vfx
; see Fig. 2. We also

use relationships (4) and (5) in the last step above. Moreover,
from (2) and the geometry and kinematics of the front wheel
(Fig. 2), we have

σ = tanφg = tan(γ′f + γf ) ≈ tan γ′f + tan γf

= λrγ +
r tan ξ c2

ϕ

vrx
ωσ − σ + λfγ .

Therefore, we obtain the relationship between the front and
rear wheel side slip ratios as follows.

λfγ = 2σ − r tan ξ c2
ϕ

vrx
ωσ − λrγ . (26)
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Similarly, we can obtain the slip ratio calculation of the front
wheel as follows. First, we obtain the longitudinal velocity
of the contact point C1 as

vfxw
= vfx cφg

+vfy sφg
≈ vrx cφg

+ (vry + σvrx) sφg

=
1√

1 + σ2

[(
1 + σ2

)
vrx + σvry

]
.

Therefore, by the definition (22), we obtain the front wheel
longitudinal slip ratio

λfs = 1 − rωf
vfxw

= 1 − r
√

1 + σ2

(1 + σ2)vrx + σvry
ωf . (27)

B. Modeling of frictional forces

Modeling of the frictional forces between the tire and the
road surface is complex. Here we focus on modeling of the
longitudinal force Fx and lateral force Fy because of their
importance in motorcycle dynamics and control.

The tire/road frictional forces depend on many factors,
such as slip and slip angles, vehicle velocity, normal load,
and tire and road conditions, etc. It is widely accepted
that the pseudo-static relationships, namely, the mathematical
models of the longitudinal force Fx and slip λ, and the
lateral force Fy and slip angle γ, are the most useful
characteristics to capture the tire/road interaction. To capture
tire/road friction characteristics, we propose to approximate
the friction forces by a piecewise linear relationship shown
in Fig. 4. Let F (x) denote the frictional force as a function
of independent variable x. The piecewise linear function
F (x) captures the property of the tire/road forces: when
0 ≤ x ≤ xm, F (x) = kx, and when xm < x ≤ xmax,
F = (1−αx)Fm

xm−xmax
(x − xm) + Fm, where 0 ≤ αx ≤ 1 is a

constant that denotes the fraction of the force at xmax of the
maximum force Fm. We can write the force F (x) as follows.

F (x) = k(a1 + a2x), (28)

where

a1 =
{ 0 0 ≤ x ≤ xm

(xmax−xm)xm

xmax−xm
xm < x ≤ xmax

and

a2 =
{ 1 0 ≤ x ≤ xm

−(1−αx)xm

xmax−xm
xm < x ≤ xmax

With the force model (28), we can write the longitudinal
force as

Fx(λs) = kλ [a1λ + a2λ sign(λs)λs] , (29)

where the function sign(x) = 1 for x ≥ 0 and −1 otherwise
is used to capture both positive (braking) and negative
(traction) forces for Fx(λs). For the lateral force, due to
the large camber angle of the motorcycle tires, we have

Fy(λeq) = kγ [a1γ + a2γ sign(λeq)λeq] , (30)

where we define the equivalent side slip ratio

λeq = tan γeq = tan
(
γ +

kϕ
kγ
ϕ

)
≈ λγ +

kϕ
kγ

tanϕ.

The values of the longitudinal, corning, and cambering
coefficients, kλ, kγ , kϕ, depend on the normal load Fz .
Due to the acceleration and deceleration, the normal load
Fz is changing during motion. For front and rear wheels,
the normal loads Ffz and Frz are obtained respectively as

Ffz =
b

l
mg − h

l
mv̇Gx, Frz =

l − b

l
mg +

h

l
mv̇Gx, (31)

where v̇Gx is the longitudinal acceleration of the motorcycle
at the mass center G. The relationship between v̇Gx and the
acceleration of point C2 is obtained as

v̇Gx = v̇rx − vryψ̇ − hψ̈ sϕ−bψ̇2 − 2hψ̇ϕ̇ cϕ .

The calculation of the above relationship is given in Ap-
pendix II. In this paper, we use the tire models in [25] to
calculate the dependence of the stiffness coefficients on the
normal load.

UnstableStable

O

k

F (x)

Fmax

Fs = αxFmax

x

xm xmax

Fig. 4. Linear approximation of the tire/road frictional force F (x).

C. Combined tire and motorcycle dynamics models

We combine the motorcycle dynamics (17) and (21) with
the tire dynamics. The controlled input variables are the
front and rear wheel angular velocities, namely, ωf and ωr,
respectively, and the steering angle φ. Note that the driving
wheel is the rear wheel and we can only apply braking for
the front wheel, namely, Ffx ≥ 0. For the control system
design, we consider the pseudo-static friction models (29)
and (30), and therefore we write the longitudinal at the front
and rear wheels as

Ffx = F1f + F2fλfs, Frx = F1r + F2rλrs (32)

and lateral forces

Ffy = F3f + F4f

(
λfγ +

kfϕ
kfγ

tanϕf

)
,

Fry = F3r + F4r

(
λrγ +

krϕ
krγ

tanϕ
)
, (33)

where F1i = kiλa1iλ, F2i = kiλa2iλ sign(λis), F1i =
kiλa1iλ, F2i = kiλa2iλ sign(λis), i = f, r, and ajiλ, ajiγ ,
j = 1, 2, are the longitudinal and lateral force model
parameters defined in (28), respectively.

Plugging (32) and (33) into (21) and using the relation-
ship (26), we obtain

M(q, σ)q̈ = K(q̇, q, σ) + Bu, (34)

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 48th IEEE Conference on Decision and Control.
Received March 5, 2009.



7

where input u :=
[
ωσ uTλ

]T
, uλ =

[
λfs λrs

]T
, matrix

K =
[
K1

K2

]

=

⎡
⎢⎢⎢⎢⎢⎣

(Km)1

(Km)2 −
F1f

m
√

1 + σ2
− σ

m
√

1 + σ2
F34 +

F1r

m

(Km)3 −
σF1f

m
√

1 + σ2
+

1
m
√

1 + σ2
F34 − Fry

m

⎤
⎥⎥⎥⎥⎥⎦ ,

(Km)i is the ith row of matrix K, F34 = F3f +
F4f

(
λfγ + kfϕ

kfγ
(2σ − λrγ)

)
, and

B =
[
B11 B12

B21 B22

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−bh
l

cϕ vrx 0 0

Bω +
rσF4f tan ξ c2

ϕ kfϕ

mvrxkfγ
√

1 + σ2
− F2f

m
√

1 + σ2

F2r

m

−bvrx
l

− rF4f tan ξ c2
ϕ kfϕ

mvrxkfγ
√

1 + σ2
− σF2f

m
√

1 + σ2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the companion paper [3], we will develop a trajectory
tracking and balancing control for dynamics (34).

V. CONCLUSION

In this paper, we presented a new nonlinear dynamic
model for autonomous motorcycles. The proposed model is
obtained through a contrained Lagrange modeling approach.
The new features of the proposed motorcycle dynamics are
twofold: First, we relaxed the assumption of zero-lateral-
velocity constraints at tire contact points and thus the model
can be used for the agile maneuvers when wheels run with
large longitudinal slips and lateral side slips. Second, we con-
sidered the motorcycle tire models and extended previously
developed motorcycle dynamics. The control inputs for the
proposed motorcycle dynamics are the front wheel steering
angle and the angular velocities for the front and rear wheels.
The trajectory tracking and balance control systems design
is based on the new dynamic model and presented in the
companion paper [3].

Currently, we plan to extend the motorcycle dynamics
models in two directions. First, we will relax the neutral
driving approximation and present a general yaw dynamics
model. Second, a coupled longitudinal and lateral motorcycle
tire dynamics will be developed and the LuGre dynamic
friction model is currently used to capture the coupled
tire/road friction characteristics.
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APPENDIX I
CALCULATION OF Ms

We consider the front wheel center O1 and the projected
steering axis point C3 on the ground surface. Since the
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frictional moment is independent of the coordinate system.
We can setup a local coordinate system xfyfzf by rotating
the coordinate system xyz around the z-axis with an angle
φg (origin at contact point C1). Let (if , if , if ) denote the
unit vectors along the xf , yf , zf -axis directions, respectively.

In the new coordinate system, we obtain the coordinates of
O1 and C3 as (0, r sϕf

,−r cϕf
) and (lt, 0, 0), respectively.

We write the front wheel friction force vector F f as

F f = −Ffxif − Ffyjf − Ffzkf

and the vector rC3C1 = −ltif . The directional vector nO1C3

of the steering axis O1, C3 is then

nO1C3 =
ltif − r sϕf

jf + r cϕf
kf√

l2t + r2
.

Therefore, the friction moment Ms about the steering axis
is calculated as

Ms = (rC3C1 × F f ) · nO1C3

=
lt√

1 + (lt/r)
2

(
Ffy cϕf

−Ffz sϕf

)
.

APPENDIX II
CALCULATION OF ACCELERATION v̇G

Taking the time derivative of the mass center velocity vG
and considering the moving frame xyz’s angular velocity
ω = ϕ̇i + ψ̇k, we obtain

v̇G =
δvG
δt

+ ω × vG = (v̇rx − hψ̈ sϕ−hψ̇ϕ̇ cϕ)i +

(v̇ry + bψ̈ + hϕ̈ cϕ−hϕ̇2 sϕ)j + (hϕ̈ sϕ +hϕ̇2 cϕ)k
+(ϕ̇i + ψ̇k) × vG

= (v̇rx − vryψ̇ − hψ̈ sϕ−bψ̇2 − 2hψ̇ϕ̇ cϕ)i + (v̇ry +
vrxψ̇ + bψ̈ + hϕ̈ cϕ−hψ̇2 sϕ−2hϕ̇2 sϕ)j + (vryϕ̇+
hϕ̈ sϕ +bψ̇ϕ̇+ 2hϕ̇2 cϕ)k,

where δvG

δt denotes the derivative of vG by treating the xyz-
coordinate as a fixed frame.
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