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ABSTRACT
We report a local minimum spanning tree (LMST)-based

consensus control of multi-robot systems. Instead of using a
potential function-based approach, we propose a safety region
concept for distributed collision-free control system design. The
safety region design also takes a consideration of the kinematics
and dynamics constraints, namely, kinodynamic constraints of
each robot. The network topology control among multiple robots
is constructed by an LMST algorithm. The LMST-based topology
control not only preserves the connectivity of multi-robot systems
but also improves the energy consumption and network commu-
nication quality. Simulation results are presented to validate the
proposed control system design.

1 INTRODUCTION
In recent years, there are a significant growth of research in

the area of cooperative control of the multi-robot systems; see [1]
for a recent survey. Most work of cooperative control of multi-
robot systems consider either a kinematic or a dynamic robot
model with no constraint on the robot’s velocity and accelera-
tion bounds. In this paper, we consider a safety-preserved veloc-
ity consensus control of multi-robot systems with kinodynamic
constraints [2]. Under the velocity consensus control, each robot
achieves a same velocity by communicating and exchange infor-
mation only with its neighboring robots. The kinodynamic con-
straints here refer to both kinematic, such as obstacle avoidance,
and dynamic constraints, such as velocity and acceleration limits.
We consider that each robot has its own physical capability, such
as velocity and acceleration bounds. For ground robots and ve-
hicles, for example, the maximum acceleration and deceleration
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depend on the interaction between the wheels and the ground.
Moreover, instead of using flooding communication among all
robots, the proposed control algorithm is based on a construction
of a local minimum spanning tree (LMST) network topology.
The LMST-based network structure preserves the connectivity
of the information graph and improves the energy efficiency and
communication quality [3].

The potential function approach is widely used as a design
methodology for collision avoidance with obstacles or moving
agents [4–6]. The velocity and acceleration of moving agents are
assumed to be unbounded. Recently, some considerations are
given for a cooperative control of a robotic team with bounded
accelerations [7]. The cooperative control of multi-robot sys-
tems under kinodynamic constraints is different with kinody-
namic motion planning. For a motion planning problem, start-
ing and ending positions in 2D or 3D environments with obsta-
cles are typically given [2, 8]. In [9], an optimal collision-free
coordination scheme is formulated and solved as a mathemati-
cal programming problem for multiple robots with kinodynamic
constraints. The approach in [9] is however centralized and thus
cannot directly be utilized for distributed control of multi-robot
systems in a dynamic environment.

In [10], a set of safety platoon maneuvers are designed based
on the safety region between two platoons moving along a high-
way. The safety regions are collision-free profiles for each vehi-
cle under the limited velocity and acceleration capabilities. The
automated vehicles in [10] is constrained in one-dimensional
space while for multi-robot systems, the motion is either 2D or
3D. A related topic is the concept of “velocity obstacles” that is
first discussed in [11] for the motion planning of mobile robots in
a dynamic 2D environment. The velocity obstacle is a first-order
method (velocity profile) for obstacle-avoidance motion plan-
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ning maneuvers. The motion planning algorithms are formulated
as a graph-searching problem by constructing the collision-free
and dynamically constrained regions.

For networked cooperative control, connectivity of the asso-
ciated information graphs is one of the fundamental requirements
to guarantee the convergence of the control systems [12]. Several
connectivity-preserved control algorithms have been proposed
for cooperative control [7, 13–15]. In [16], proximity graphs
are used and analyzed as the information network among mo-
bile agents for a consensus algorithm. From communication ef-
ficiency and energy consumption viewpoint, a flooding broad-
casting scheme is not ideal. Communication power usage is pro-
portional to broadcasting range and using the maximal transmis-
sion power at all times is not cost-effective and energy-efficient.
Frequent broadcasting will also interfere and reduce the network
and communication capacity and efficiency. Topology control al-
gorithms have recently been proposed to maintain network con-
nectivity while reducing energy consumption and improving net-
work efficiency and capacity [17]. The key idea of topology
control is to collaboratively determine the transmission power
among network nodes and form a proper neighborhood rela-
tion [3].

The work in this paper are inspired from recent develop-
ment in several areas, such as robotic motion planning in dy-
namic environments, safety control of automated vehicles, and
topology control in sensor networks. The contributions of this
paper are threefold. First, we take a different approach to design
a collision-free control system for multi-robot systems. We con-
sider to design a safety region associated with each robot. The
safety region of a robot is a high-dimensional profile that de-
pends on the relative position and velocity of the robot and its
neighbors. Comparing with other collision-free designs, such as
the potential function approach, the safety region design incor-
porates robot’s kinodynamic constraints and is scalable. Second,
the one-hop LMST-based network topology design reduces node
degrees, and thus improves communication energy efficiency.
The preserved-connectivity of communication networks among
robots is formulated as an optimization problem of the weighting
factors of control laws. Finally, our approach can be easily ex-
tended to other types of communication topology design, such as
the k-connectivity fault-tolerant communications [18] and prob-
abilistic and computational approaches [19, 20].

The remainder of the paper is organized as follows. We
discuss the safety region design in Section 2. In Section 3, we
present an LMST-based topology control for mobile networked
robots. We present the velocity consensus control in Section 4.
Simulation results are presented in Section 5, and finally we con-
clude the paper in Section 6.

2 SAFETY REGION DESIGN
2.1 Two-robot safety region design

We consider an N-robot system in a 2D planar space. We
denote the multi-robot system as R := {R1, · · · ,RN}, where the
ith mobile robot is denoted as Ri. We also consider that there are

M static or moving obstacles, denoted by O := {O1, · · · ,OM} in
the environment. We assume that each robot is equipped with
both communication and sensing capabilities. The communica-
tion among robots is through ad hoc networks and each robot
detects the location of obstacles by on-board sensors.

For each robot Ri, the magnitudes of its velocity vi ∈ R
2 and

acceleration ai ∈ R
2 are bounded by vRi

max and aRi
max, respectively,

‖vi‖ ≤ vRi
max, and ‖ai‖ ≤ aRi

max, i = 1, · · · ,N. (1)

For each obstacle Oj, we also have the velocity and accelera-

tion bounds, ‖v j‖ ≤ v
Oj
max and ‖a j‖ ≤ a

Oj
max, j = 1, · · · ,M. Here

we consider stationary obstacles as a special case of the moving
obstacles with zero velocity and acceleration. We assume that
for both robots and obstacles, their velocity and acceleration (de-
celeration) limits are symmetric, for example, for robot Ri, its
acceleration follows in a range of [−aRi

max, aRi
max]. Moreover, we

consider that robots can freely move along any direction and the
acceleration can be applied to any direction as well.

We consider robots Ri and Rj as shown in Fig. 1. Let ri,
vi, and r j, v j denote their position and velocity vectors (in the
navigation frame N ), respectively. The relative position vector
ri j between Ri and Rj is then ri j := r j − ri and the directional
vector ni j := ri j

‖ri j‖ . It is straightforward to calculate the relative

distance ri j(t) and the relative velocity magnitudes ṙi j(t) as

ri j(t) := ‖ri j(t)‖, (2a)

ṙi j(t) := (v j − vi) ·ni j = −v ji ·ni j, (2b)

where vi j = v j − vi = −v ji.
We assume that both robots and obstacles are considered as

circular shapes and also rigid bodies. The radius of Ri is denoted
by si. Since we consider the relative motion between two robots,
we consider robot Ri as a point and the size of robot Rj is of a
radius of the Minkowski addition l j := si + s j; see Fig. 1. We
define an unsafe impact between two robots as follows.

Definition 1. For two robots Ri (a point-robot) and Rj (with a
size of radius l j) as shown in Fig. 1, an unsafe impact between
Ri and Rj is said to happen at time t if

ri j(t) ≤ l j, and ṙi j(t) ≤ 0. (3)

We consider the conditions under which the unsafe im-
pact happens are dependent on the magnitudes of relative po-
sition ri j(t), velocity ṙi j(t), and the relative velocity direction,
namely, the angle i j(t) between vi j and ni j. Therefore, we de-
fine a safety region as follows.

Definition 2. A safety region, denoted as XS
i j, of two robots Ri

and Rj is defined as a set of all triples ( ri j(t), ṙi j(t), i j(t)) ⊂
R

2 ×S such that the unsafe impact conditions (3) are not satis-
fied.
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Figure 1. A schematic of two robots Ri and Rj in the 2D space.

To compute the safety region XS
i j, we first find out the direc-

tion of acceleration ai(t) of robot Ri that will maximally change
the robot’s position along the velocity direction vi(t). Fig. 2
shows the positions of robot Ri at time t and t + t (at R′

i). We
setup a local coordinate x-y and let the x-axis direction along the
velocity vi(t). Assume the acceleration ai(t) is along the direc-
tion with an angle with the y-axis direction (Fig. 2). Consider
at time t + t, robot Ri is located at R′

i with coordinates ( x, y)
and angle with the x-axis direction.

x

y

Ri

R′
i

vi(t)

ai(t)

x

y

Figure 2. A schematic of two robots Ri and Rj in the 2D space.

With a small t, we approximate the position of R′
i as

x = vi t − 1
2
(ai sin ) t2, y =

1
2
(ai cos ) t2, (4)

where vi and ai are the magnitudes of vectors vi(t) and ai(t),
respectively. Therefore, we have

r ( ) := tan =
y
x

=
1
2 (ai cos ) t

vi − 1
2 (ai sin ) t

. (5)

To make to be the maximum at time t, we need r ( ) to
be the maximum when = m. We take the derivative of r ( )

with respect to and consider r′ ( m) = 0. Thus, we obtain

sin m =
ai

2vi
t. (6)

From Eq. (6), we consider t → 0 and obtain m = 0. Therefore,
to make robot Ri change its position as much as possible along
the current velocity direction, we need its acceleration ai(t) is
along the direction perpendicular to its velocity direction vi(t),
namely, ai(t) ⊥ vi(t). Furthermore, from Eq. (4), we obtain that
ai = aRi

max to render y to be the maximum. We summarize the
above observation as the follow lemma.

Lemma 1. Suppose robot Ri has velocity and acceleration vi(t)
and ai(t) at time t, respectively. For a maximum change of
its position along the direction of vi(t), its acceleration ai(t)
should be applied along the direction perpendicular to vi(t) and
its magnitude should be ai = aRi

max, namely, ai(t) ⊥ vi(t) and
‖ai(t)‖ = aRi

max.

Since we consider the relative motion between Ri and Rj,
we assume that robot Rj is stationary and Rj moves with veloc-
ity v ji. We setup a coordinate system x-y with the origin at Ri

and the x-axis is along the directional vector ni j and the y-axis is
perpendicular to ni j. We assume that the relative velocity v ji is
at an angle of i j with the x-axis direction; see Fig. 1. We define
a critical velocity angle c

i j(t) between Ri and Rj as

c
i j(t) := sin−1

(
l j

ri j(t)

)
. (7)

For robot Ri to avoid a collision with robot Rj, if i j <
c
i j(t),

robot Ri needs to change its velocity direction. For a safety re-
gion definition, we consider an extreme case when robot Ri is
about to collide with Rj. From the results in Lemma 1, we need
ai(t) ⊥ v ji(t) and ‖ai(t)‖ = aRi

max for robot Ri to avoid a collision
with Rj for a given relative velocity vi(t). Therefore, the trajec-
tory i of robot Ri is a circular curve (centered at point O) that is
tangent to the boundary of robot Rj and the relative velocity vi(t);
see Fig. 1. Let rm

i j denote the radius of the trajectory i. From the
geometry relationship in Fig. 1, we have the following relation-

ship
(
rm
i j + l j

)2
=

(
ri j + rm

i j sin i j

)2
+

(
rm
i j cos i j

)2
. We solve

the above equation for rS
i j and obtain

rS
i j( i j) =

√
(rm

i j )2 sin2
i j + l2j +2l jrm

i j − rm
i j sin i j, (8)

where rm
i j :=

v2
ji

a
Ri
max

=
ṙ2i j

a
Ri
max cos2 i j

. In the above equation, we use the

relationship ṙi j(t) = v ji(t)cos i j(t). Considering the velocity
bounds for robots Ri and Rj, we have the following constraints

−vm
i j ≤ ṙi j ≤ vm

i j , (9)
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where vm
i j := vRi

max + v
Rj
max.

From the above calculation, we can write the safety region
XS

i j as

XS
i j =

{
( ri j(t), ṙi j(t), i j(t)) ⊂ R

2 ×S
∣∣ i j(t) ≥ c

i j(t),

or i j(t) < c
i j(t), ri j(t) ≥ rS

i j( i j, t),

and ‖ ṙi j‖ ≤ vm
i j

}
. (10)

It is straightforward to verify from (8) that rS
i j( i j) is a mono-

tonically decreasing function of angle i j ≥ 0. We therefore con-
sider a special case when the relative velocity v ji(t) is along the
direction of the relative position vector n ji(t), namely, i j(t) = 0.
In such a case, rS

i j( i j) has a minimum value if other variables
are fixed. When i j(t) = 0, from (8), we obtain

(
rCi j

)2 − (vi j)
2

(aRi
max/2l j)

= l2j , (11)

where rCi j := rS
i j(0) = rS

i j

∣∣∣
i j=0

. Fig. 3 illustrates the intersec-

tion region (as the shaded area) of safety region XS
i j and the plane

given by i j(t) = 0. The boundary of the safety region is given
by the hyperbola (11).

vm
i j

−vm
i j

O rCi j

vi j

l j

(
rCi j

)2 − ( ṙi j)
2

(aRi
max/2l j)

= l2j

Figure 3. Safety region XS
i j (shaded area) when i j(t) = 0.

For a general case when i j �= 0, the safety region is given
by Eqs. (8) and (10). Fig. 4 shows an example of the boundary
surface of the safety region XS

i j. The safety region is on the upper
half volume of the surface shown in the figure. From Fig. 4, we
observe that for a larger angle i j, the safety region is close to
a plane tangent to the circular disk with radius l j, which implies
that robot Ri can get closer to Rj if their relative velocity direction
is perpendicular to their relative position direction.

Figure 4. Surface of safety region XS
i j in R

2×S1 for a case of aRi
max = 1

m/s2 and l j = 1 m/s for i j ∈ [0, 2 ]..

Before we discuss the safety region of multi-robot systems,
we like to discuss a safety relative velocity profile vS

i j given by

XS
i j. From Eq. (8), we obtain the relationship between vi j and

rS
i j as

v2
i j = fv( rS

i j) :=
aRi

max

[
( rS

i j)
2 − l2j

]
2(l j − rS

i j sin i j)
. (12)

It is straightforward to check that rS
i j sin i j ≤ l j for i j ∈ [0, 2 ]

and rS
i j ≥ l j so that the right-hand side of the above equation

is non-negative and well-defined. Within XS
i j, when i j(t) ≤

c
i j(t), l j ≤ ri j(t) ≤ l j

sin i j
, and the function fv(r) is a non-

decreasing function (we observe this from the fact f ′v(r) ≥ 0 for
r ∈ [l j, l j/sin i j]. We therefore obtain the safety velocity profile
vS
i j as

vS
i j := vS

i j( ri j, i j) =

√√√√aRi
max

[
( ri j)2 − l2j

]
2(l j − ri j sin i j)

. (13)

2.2 Multi-robot safety region
We now discuss the safety region for a case when there are

many robots (or obstacles) around robot Ri. We first define a
sensing neighboring set Ni for robot Ri as follows.

Definition 3. For a set of robots R , the (sensing) neigh-
bors of Ri is a subset SNi ⊂ R ∪ O that satisfies SNi ={
Rj ∈ R or Oj ∈ O |‖r j − ri‖ ≤ lsi

}
, where lsi > 0 is the sensing

range of robot Ri.

For robot Ri, the collision-free safety region can be written
as the intersection of safety regions of all of its sensing neighbor-
ing set, namely,

XS
i =

\
j∈SNi

XS
i j (14)
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We can prove that the safety region XS
i defined by (14) is a con-

vex set. The safety region XS
i j is an embedded subspace in R

2×S.

3 LMST-BASED NETWORKS TOPOLOGY CONTROL
We assume that the each robot knows its position and com-

municates with other robots using ad hoc networks. First, we
define the physical neighboring set of a robot as follows.

Definition 4. For a set of robots R , the (physical) neigh-
boring robots for Ri is a subset Ni ⊂ R defined as Ni ={
Rj ∈ R |‖r j − ri‖ ≤ lRi

}
, where lRi > 0 is the maximum com-

munication range of robot Ri.

Through communication, the robotic team forms an undi-
rected simple graph G = (V,E), where V is the set of robots, and
E is the edge set defined by the (physical) neighbors Ni of each
Ri, namely, E = {(Ri,Rj) |Rj ∈Ni}. For each robot Ri, we assign
a unique id, for example, id(Ri) = i, and we denote Gi = (Vi,Ei)
as the induced subgraph of G such that Vi = Ni.

We construct the LMST in several steps. First, each node
periodically broadcasts a hello message using its maximal
transmission power to obtain its physical neighbors Ni. Based
on Ni, node Ri can construct a local minimum spanning tree
Ti = (V (Ti),E(Ti)) of Gi which spans all nodes within its neigh-
bors in Ni. The construction of LMST can be obtained by exist-
ing algorithms, such as Prim’s algorithm [21]. Here a unique
weight function (as a triplet) has been defined on the edge
(Ri,Rj) as (‖ri − r j‖, max(id(Ri), id(Rj)), min(id(Ri), id(Rj)))
such that the constructed LMST is unique [3]. With the LMST,
we define a logical neighboring relationship and logical neighbor
set.

Definition 5 ([3]). Robot R j is a (logical) neighbor of robot Ri,
denoted as Ri → Rj, if and only if (Ri,Rj) ∈ E(Ti). Ri ↔ Rj if
and only if Ri → Rj and Rj → Ri. The (logical) neighbor set LNi

of robot Ri is defined as LNi = {Rj ∈V (Gi) |Ri → Rj}.
Note that the LMST-based network topology G0 = (V0,E0)

has all robots as its node set V0, and E0 is constructed by LMST,
namely, E0 = {(Ri,Rj) |Ri → Rj, Ri,Rj ∈ V (G)}. More detailed
can be found in [3]. We define the degree of a node as the number
of its neighbors. The following properties are obtained from the
construction of the LMST and are re-stated here from [3] without
proof.

Proposition 1. The degree of any node in G0 is bounded by 6,
namely, deg(Ri) ≤ 6, ∀Ri ∈V (G0).

Proposition 2. The network topology G0 under LMST pre-
serves the connectivity of G, namely, G0 is connected if G is
connected.

Proposition 1 implies that the node degree in G0 is bounded
by 6. Indeed, the simulation results in [3] show that an aver-
age node degree of 2.06 (compared with 16.48 of all one-to-one
communication in Ni) of a randomly distribution of 100 nodes in

a 1000 × 1000 m2 region and li = 250 m. The results in Proposi-
tion 2 imply that the connectivity of the mobile robotic network is
preserved by the LMST topology G0. This property is important
since the convergence of cooperative control strategies is based
on the connectivity (or somewhat variations) of the information
flow among the networked robots.

Now we consider the mobility of each robot and discuss how
the robot’s movement affects the local topology G0. Let T de-
note the time period of the node broadcasting (hello message).
We assume that all N robots are distributed in the region with an
area S0. Since robot Ri cannot obtain the kinematics information
of other robots outside lRi , other robots outside the communica-
tion range of Ri are assumed to follow a Brownian-like random
motion. Let ni := |Ni| denote the number of physical neighbors
of Ri, where | · | denotes the cardinality of a set.

We denote the covered communication area of Ri as disk
D(Ri, lRi ). Fig. 5 illustrates a schematic diagram of the prob-
ability of a node Rk, which is initially outside of the com-
munication range D(Ri, lRi ), moves into D(Ri, lRi ). We denote
r := BC = vm

ik T > 0 as the maximum distance between Ri and
Rk within T and x := rik. Then the probability pe that Rk enters
disk D(Ri, lRi ) is illustrated by the shaded area in Fig. 5.

C

Ri(A)

Rk(B)

lRi

D(Ri, lRi )

r

Figure 5. A schematic of calculation of the probability that a new (physi-

cal) neighbor Rk moves into the disk D(Ri, lRi ).

Following the similar treatment in [3], we calculate proba-
bility pe as follows. If r < 2lRi , then

pe =
Z lRi +r

lRi

S1

r2

2 xdx
S0

(
N−ni −1

N

)
=

Z lRi +r

lRi

2xS1 i

S0r2 dx,

where S1 = 1(lRi )2 + 2r2 − rxsin 2 is the shaded area,

1 := ∠CAB = cos−1
(

x2+(lRi )2−r2

2x(lRi )

)
, 2 := ∠CBA =

cos−1
(

x2+r2−(lRi )2

2xr

)
, and i := N−ni−1

N is the ratio of the

numbers of nodes outside disk D(Ri, lRi ) and the total robotic
nodes.

5 Copyright © 2008 by ASME



If r ≥ 2lRi , we similarly obtain

pe =
Z r−lRi

lRi

(lRi )2

r2

2 xdx
S0

i +
Z r+lRi

r−lRi

S1

r2

2 xdx
S0

i

=
(lRi )2(r−2lRi ) i

S0r
+

Z r+lRi

r−lRi

2xS1 i

S0r2 dx.

We then obtain the expected (or estimated) number of nodes n̂e
i =

(N−ni−1)pe that enter the disk D(Ri, lRi ) within the time period
T .

The number of nodes that leave the disk D(Ri, lRi ) can be es-
timated in a deterministic fashion because each node in D(Ri, lRi )
can broadcast its kinematics information to Ri and, thus, we can
approximately determine each neighbor’s location assuming its
velocity is constant within T . Fig. 6 illustrates such a sce-
nario. At current time, robot Ri has four physical neighbors Ri j,
j = 1, · · · ,4. After T , each neighbor Ri j moves to its new po-
sition R′

i j. Since robot Ri receives kinematics information from
each of its physical neighbors, it can predict the location of each
neighbor after T and, thus, estimate the nodes who will move
out of disk D(Ri, lRi ).

Ri
R′

i

Ri1 R′
i1

Ri2

R′
i2

Ri3

R′
i3

Ri4

R′
i4

lRi

D(Ri, lRi )

D′(Ri, lRi )

Figure 6. A schematic of calculation of the location (R′s) of each neigh-

bor in D(Ri, lRi ) after T . Each solid circle Ri j , j = 1, · · · ,4, indicates

the location of neighbors and each dash-line circle indicates the new lo-

cation of R′
i j after T .

Let n̂l
i denote the estimated number of neighbors of Ri by

using the current kinematics information from neighbors in Ni.
We consider n̂l

i = |Li| and the set Li is denoted the robots that
will leave disk D(Ri, lRi ) within T ,

Li = {Rj ∈ Ni |‖r̂ j(t + T )− ri(t)‖ > li},

where r̂ j(t + T ) := r j + v j T is the estimated position vector
of Rj in Ni. For example, consider the scenario shown in Fig. 6,
Li = {Ri3,Ri4} and therefore n̂l

i = 2. With the estimation of the

number of nodes that are entering and leaving the disk D(Ri, lRi ),
we obtain the estimated net change of the node number

ni = n̂e
i − n̂l

i . (15)

4 COLLISION-FREE CONSENSUS CONTROL
In this section, we present a collision-free consensus control

of multi-robot systems in a dynamic environment. The control
system design is based on the safety region that is discussed in
Section 2 and the LMST-based network topology presented in
the previous section.

We consider a discrete-time particle dynamics model for
each mobile robot at time k,

{
ri(k+1) = ri(k)+ vi(k) Tc,

vi(k+1) = vi(k)+ui(k) Tc,
(16)

where ui(k) is the controlled acceleration (at the kth step) and Tc

is the control updating time period. For robot Ri, we consider the
following velocity control law

ui(k) =
j∈LNi

ai j(k)(v j(k)− vi(k)), (17)

where ai j(k) > 0 are the weighting factors. If we define aii(k) =
0, i = 1, · · · ,N, then the matrix A(k) = [ai j(k)] can be considered
as a weighted adjacency matrix of LMST G0. Note that due to
the mobility of robots, matrix A(k) is time-varying. We also con-

sider the constraint |LNi|
j=1 ai j = 1, ai j > 0 for a scaled velocity

distribution among robots.
The consensus control law (17) is similar to those in [5,22].

The only difference here is that we consider the LMST G0 as the
information network while most other control laws assume one-
to-one communications within the maximal transmission range.
Based on the control law (17), we have to consider the following
three requirements:

R1. Collision avoidance. We have to consider the collision
among robots and between robots and (stationary or mov-
ing) obstacles;

R2. Preserved connectivity among the robot network; and
R3. Each robot’s motion has to satisfy the dynamic constraints,

namely, with velocity and acceleration bounds.

To satisfy the above requirements, we consider to optimize
the weighting factors ai j(k) over the safety region XS

i and to con-
sider the topology change among the physical neighbors of robot
Ri. Note that the safety region XS

i is obtained by considering the
kinodynamic constraints and is collision-free. By choosing an
appropriate set of ai j, we may possibly control the velocity vi
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in XS
i and, thus, satisfy Requirements R1 and R3. To satisfy Re-

quirement R2, we consider an optimization problem to maximize
the net change of the neighbor nodes of Ri as follows.

a∗i j(k) = argmax
ai j(k)

ni(k)

s.t. vi(k) ∈ XS
i (k), |ui(k)| ≤ aRi

max

j
ai j(k) = 1, ai j(k) > 0. (18)

Intuitively, if the number of nodes in the neighbor set Ni

does not decrease over time, then by the construction of LMST,
the connectivity of the network among mobile robots is guar-
anteed. Under such a design, we have the following consensus
control performance.

Theorem 1. If there exists a set of ai j by (18) such that the num-
ber of neighboring nodes is kept non-decreasing (i.e. ni(k) ≥
0), then under the consensus control law (17), the robot team
R converges to the same velocity (vi → v∗ as t → , ∀i, where
v∗ is determined by the initial configuration of the networks and
robots’ velocities) while satisfying the kinodynamic constraints.

Proof. The convergence of the consensus control (17) comes
from results in [22] if the network topology is connected. The
connectivity of the robot network is from the construction and
properties of LMST. If the neighboring node number of Ri is non-
decreasing ( ni(k)≥ 0), then by the LMST construction, we can
guarantee both connectivity of the communication network and
kinodynamic constraints by (18). This completes the proof.

It is noted that we cannot guarantee that there always exist
solutions of ai js in (18). There is a trade-off among safety robot
maneuvers under kinodynamic constraints, dynamically chang-
ing topology among the robotic team, and connectivity among
robots.

5 SIMULATION RESULTS
In this section, we demonstrate the proposed control design

through simulation examples. We consider a scenario where
30 robots are randomly placed on a 20 m × 20 m square; see
Fig. 7(a). The initial velocities along the x- and y-axis directions
for each robot are assigned randomly between 1 m/s and 2 m/s,
respectively. Each robot is assumed to have the same circular size
with radius si = 0.1 m. The maximum velocity and acceleration
for each robot are vRi

max = 2 m/s and aRi
max = 0.1 m/s2.

Figure 7(b) shows the flooding-communication topology at
the beginning of the simulation. The initial LMST topology is
shown in Fig. 7(c) and the trajectory of the robot team under the
velocity consensus control is illustrated in Fig. 7(d).

The trajectory demonstrates that the velocities of all robot
converge to the same value. To see that clearly, Figure 8 shows
the velocity of each robot in the X- and Y -axis directions. It is
clearly observed that the convergence of the robot’s velocities.
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Figure 7. (a) A randomly distributed 30-robot team on a square at the

initial time. (b) Initial one-to-one communication topology. (c) Initial LMST

topology. (d) Trajectory of the robot team.

Figure 9 shows a few snapshots of the LMST topology of the
robot team during the simulation period. From these snapshots,
we clearly observe that the topology of the LMST varies when
the robots move during the simulation. Since the LMSTs are
always connected, the convergence results are obtained. These
simple simulation results demonstrate the proposed algorithms.
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Figure 8. Velocity profiles of each robot. (a) Velocity along the x-axis

direction. (b) Velocity along the y-axis direction.

6 CONCLUSION
In this paper, we developed an LMST-based consensus con-

trol of multi-robot systems. We proposed a safety-region con-
cept for distributed collision-free control system design. Com-
paring with the potential function-based collision-free approach,
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Figure 9. Snapshots of the LMST topology. (a) t = 5 s. (b) t = 10 s.

(c) t = 20 s. (d) t = 30 s.

the proposed scheme provides a safety region-based on the kino-
dynamic constraints. The network topology is constructed by an
LMST topology among multi-robot and therefore the communi-
cation overhead can be reduced significantly comparing with the
flooding-communication topology. A connectivity-preserving
movement is designed for each robot based on the LMST-based
topology. Preliminary results have demonstrated the efficiency
and effectiveness of the proposed control system design. Cur-
rently, we are refining the control design and testing more com-
plex scenarios is also ongoing research.
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