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Abstract— We present balancing control analysis of a sta-
tionary riderless motorcycle. We first present the motorcycle
dynamics with an accurate steering mechanism model with con-
sideration of lateral movement of the tire/ground contact point.
A nonlinear balance controller is then designed. We estimate
the domain of attraction (DOA) of motorcycle dynamics under
which the stationary motorcycle can be stabilized by steering.
For a typical motorcycle/bicycle configuration, we find that the
DOA is relatively small and thus balancing control by only steer-
ing at stationary is challenging. The balance control and DOA
estimation schemes are validated by experiments conducted
on the Rutgers autonomous motorcycle. The attitudes of the
motorcycle platform are obtained by a novel estimation scheme
that fuses measurements from global positioning systems (GPS)
and inertial measurement units (IMU). We also present the
experiments of the GPS/IMU-based attitude estimation scheme
in the paper.

I. INTRODUCTION

Single-track vehicles such as motorcycles and bicycles is
underactuated and intrinsically unstable. As shown in [1],
the motorcycle/bicycle systems become much easier to be
stabilized at a faster moving velocity. When a riderless
motorcycle is at stationary, namely, zero moving velocity,
balancing by only steering actuation becomes extremely
challenging. The main objective of this paper is to present an
analysis of balance control of stationary riderless motorcycle
with only front-wheel steering control.

Motorcycle dynamics and stability are studied extensively
and the modeling work can be considered as two groups [2],
[3]: simple inverted pendulum models and multi-body dy-
namic models. Most of these dynamic models consider either
riderless motorcycle/bicycle systems [1], [4]–[8], or simple
human/bicycle interaction dynamics [9], [10]. Stability char-
acteristics are typically discussed using a linearization ap-
proach with consideration of a constant velocity [1]–[3], [11],
[12]. Control of a riderless autonomous motorcycle/bicycle
has also been proposed in [6], [13]–[17]. Most of these
autonomous systems use both steering and traction/braking
as control actuation except that in [13], [14], additional
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actuation such as weight-shifting or gyroscopic forces are
used to balance the systems.

Balancing control of a stationary riderless motorcycle is
the main topic of this work. Here we consider front-wheel
steering as the only control actuation of the system. The
motivation for this study is twofold. First, balance control
of stationary motorcycle systems is much more challenging
than that under a certain velocity. With only steering control,
we show that the balance is maintained within a certain
dynamic region. We reveal and explicitly identify this at-
traction region. If the motorcycle state is outside this region,
it is impossible to maintain balance only by steering and
some other control mechanisms (e.g., weight shifting) are
needed. Second, understanding the balance capability by only
steering is important for practical applications such as the
use of bicycle systems as rehabilitation device for recovering
human postural control for disabilities patients [18].

The dynamics of the stationary motorcycle systems are
conceptually similar to two-link coupled inverted pendu-
lums. However, the complexity of the motorcycle dynamics
comes from the interconnected multi-body mechanisms. The
balance of the platform by steering control is obtained
through the movement of the center of the gravity of the
system. We reveal and experimentally test the relationship
between steering and the height change of the motorcycle
center of gravity. To analyze and estimate the domain of
attraction (DOA) of the motorcycle dynamical systems, we
extend the approach in [19] with consideration of steering
mechanism for the motorcycle systems under a sliding-mode
stabilization controller. We also demonstrate a novel attitude
estimation scheme by fusing the position information from
global positioning systems (GPS) with measurements from
onboard low-cost inertial measurement units (IMU).

The remainder of the paper is organized as follows. In
Section II, we discuss motorcycle models. In Section III,
we present the balancing control and the DOA analysis for
the stationary motorcycle system. We present the GPS/IMU
attitude estimation scheme in Section IV. Experimental setup
and results are presented in Section V. Finally, we conclude
the paper in Section VI.

II. MOTORCYCLE DYNAMICS

A. Steering mechanism and geometric relationships

Fig. 1(a) shows the Rutgers autonomous motorcycle sys-
tem. The values of the motorcycle physical parameters are
listed in Table I. From the geometry of the front wheel
steering mechanism [8], we find the following relationship.

tanβg cφ = tanβ cξ, (1)
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Fig. 1. (a) Rutgers autonomous motorcycle system. (b) Schematic of the motorcycle system. (c) Top view of the steering mechanism and the front tire
geometry under steering.

where we use notations cφ := cosφ and sφ := sinφ for
roll angle φ and other angles, ξ is caster angle, β and βg
are steering angle and projected steering angle, respectively.
To facilitate the explanation of the influence of the steering
mechanism on motorcycle stability, we first assume that the
front tire rotates about the fixed axis; see Fig. 1(c). Due
to the steering mechanism and a caster angle ξ, the height
change ΔhG of the center of gravity G is calculated by an
estimate of the motorcycle frame rotation angle δ. In [8],
lateral deflection angle δ of the rear frame is approximated
as

δ =
lt cξ
l
βg, (2)

where l is the wheel base and lt is the wheel trail. The height
change ΔhG is then calculated by the following equation

ΔhG(β, φ) = δb sφ =
blt sφ cξ

l
βg, (3)

where b is the horizontal distance between the rear
tire/ground contact point C2 and the mass center G.

The formulation (3) does not consider the movement of
the tire/ground contact point C1. Fig. 2 illustrates the steering
mechanism geometry. As shown in the figure, because the
front wheel plane moves from Πs to Π′

s, the height of the
center of gravity G is changed from two sources. The first
one is the change of height of front tire center point (from
Of to O′

f ). We denote the height difference between Of
and O′

f as ΔhOf
. The second source comes from the lateral

movement of C1 (to C ′
1). We denote the lateral movement

distance between C1 and C ′
1 as Δyc1 . In the following, we

first discuss how to compute ΔhOf
and Δyc1 and then revise

the formulation of ΔhG in (3).
We assume that under steering point C1 is moving on a

circular curve with radius R which contains the effect of tire
width. Notice the fact that if the steering angle is 90 degs,
the arc length of curve Ĉ1C

′
1 is equal to Rξ [8]. In this

special case, βg = π
2 and it is straightforward to calculate

that ΔhOf
= R(1−cos ξ). For any general steering angle βg ,

we approximate ΔhOf
proportionally to that of the special

case of βg = π
2 . Therefore, we obtain

ΔhOf
= R

[
1 − cos

(
βg
π/2

ξ

)]
= R

[
1 − cos

(
2βgξ
π

)]
.

Then, we approximate the height change of G as

ΔhG1 = R cosφ
[
1 − cos

(
2βgξ
π

)]
b

l
. (4)
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Fig. 2. Schematic of the front wheel steering mechanism.

To calculate Δyc1 , we take the similar approach as ΔhOf
.

We illustrate the calculation in Fig. 2. We denote the contact
point as Cπ/2 under steering angle βg = π

2 . We assume
that the trajectory of C1Cπ/2 is a circular curve with radius
rs = Rξ

π/2 (since the moving length from C1 to Cπ/2 is Rξ by
the definition of the caster angle ξ). We approximate Δyc1
proportionally to that of steering angle is π/6, namely,

Δyc1
βg

=
rs (1 − cosπ/6)

π/6



TABLE I

MOTORCYCLE PARAMETERS

m (kg) b (m) l (m) lt (m) h (m) ξ (deg) R (m) Ix (kgm2) bp (m) hp (m)

34.9 0.34 0.74 0.05 0.27 31 0.15 1.8 0.038 0.34

The above calculation is illustrated in Fig. 2 by assuming
that the lateral displacement of C ′

1 is proportional to that of
βg = π

6 . By such an approximation, we obtain

Δyc1 =
12Rξ
π2

(
1 − cos

π

6

)
βg. (5)

We here choose βg = π
6 as the reference point mainly for

simplicity to obtain a linear relationship between Δyc1 and
βg . Note that by considering the lateral movement of point
C1, we need to deduct an angle of magnitude

Δyc1
l from δ

in (2) to revise the calculation of ΔhG in (3).
Using the above discussions with (4) and (5), we revise

the relationship in (3) as follows

ΔhG(β, φ) =
(
δ − Δyc1

l

)
b sφ−ΔhG1

=
blt cξ sφ

l
βg − 12Rbξ sφ

π2

(
1 − cos

π

6

)
βg

−bR cφ
l

[
1 − cos

(
2ξβg
π

)]
. (6)

Fig. 3 shows that the new model is much more accurate than
the linear approximation model (3).

0 10 20 30 40 50 60 70 80
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

 

 

Test #1
Test #2
New model 
Linear model

β (deg)

Δ
h

G
(c

m
)

Fig. 3. Experimental comparison of ΔhG with different model predictions
with initial roll angle φ = −3.8◦.

B. Motorcycle dynamics

Similar to our previous study [15], [20], we use the
Lagrangian equations to obtain the dynamic equation of the
motion of a stationary riderless motorcycle. We obtain the
dynamics equation as follows

φ̈ =
mg sinφ
Ix +mh2

(
h+

αRb

l

)
+

mgb cφ
(Ix +mh2)l

[
lt cξ −

12Rξ
π2

(
1 −

√
3

2

)]
βg, (7)

where α := 1 − cos
(

2ξβg

π

)
, m is the total mass of the

motorcycle system, h is the height of mass center G, Ix is
the mass moment of inertia of the motorcycle system along
the x-axis, and g is the gravitational constant. Due to the page
limit, we neglect the detailed derivation of (7) and readers
can refer to the similar derivations in [15], [20].

III. BALANCE STABILITY AND CONTROL DESIGN

A. Roll angle controllable region

We consider the controllable region of motorcycle sys-
tems (7) as the maximum roll angle region in which the
system is possibly balanced around the vertical position
(φ = 0) for any given steering control design.

To make the analysis tractable, we assume that: (1) the
tire/ground contact is a point rather than a patch; and (2)
the two contact points C1 and C2 do not move (Fig. 1(c)).
Under a roll angle φ, the lateral movement of the center of
gravity G is approximated as ΔGy = h sinφ. Now suppose
that we apply a steering angle β on the front wheel, the turn
of the front wheel will compensate for the lateral movement
of point G by distance Δβ

Gy as follows.

Δβ
Gy = δb cφ =

ltb cξ cφ
l

βg. (8)

To maintain the balance by steering, let ΔGy − Δβ
Gy = 0

and thus we obtain

φ = tan−1

(
blt cξ
hl

βg

)
. (9)

For the Rutgers autonomous motorcycle, we use all physical
parameters in Table I and (βg)max = π/3 to obtain

φmax = 4.4◦.

Remark 1: From (9), we clearly see that the maximum
stabilizable roll angle by steering depends on geometric
parameters of the motorcycle system. Note that the analysis
here is based on a simplified static and kinematic calculation
and consideration of dynamic effects is ongoing work.

B. Domain of attraction (DOA)

We consider the DOA of the motorcycle dynamics (7)
under a particular balance controller. We first specify a
controller before analyzing DOA. Using a small angle ap-
proximation, we consider α ≈ 0.05 in the dynamics (7) and
thus we rewrite (7) as

φ̈ = f1(φ) + f2(φ)βg, (10)



where

f1(φ) =
mg sinφ
Ix +mh2

(
h+

0.05Rb
l

)
and

f2(φ) =
mgb cφ

(Ix +mh2)l

[
lt cξ −12Rξ

π2

(
1 −

√
3

2

)]
.

We design a sliding mode control for the dynamic sys-
tems (10). We first define a sliding surface s = φ + λφ̇.
Then we design the controller

βg =
−φ̇− λf1(φ) −Ks

λf2(φ)
, (11)

where λ > 0 and K > 0 are constants. Plugging (11)
into (10), we obtain

φ̈ = −K
λ
φ−

(
1
λ

+K

)
φ̇ (12)

as the closed-loop dynamics.
To estimate DOA, we consider the case that the maximum

projected steering angle is π
3 , namely, βg ≤ π

3 . Combining
(10) and (12), it is straightforward to obtain the DOA
estimates given by∣∣∣∣∣−K

λ φ− ( 1
λ +K

)
φ̇− f1(φ)

f2(φ)

∣∣∣∣∣ ≤ π

3
. (13)

Fig. 4 shows the DOA estimates with three different sets
of control parameters. It is interesting to find that when the
controller is aggressive such as K = 40, the DOA becomes
smaller. This is because that aggressive actions will increase
the roll angular motion, which is undesirable for the balance
control. Fig. 4 also shows that the DOA estimate under this
type of sliding-mode control has a strip shape.
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Fig. 4. DOA estimation under different sliding-mode control designs

IV. GPS/IMU-BASED MOTORCYCLE ATTITUDE

ESTIMATION

In the previous balance control analysis, we assume that
we can measure the motorcycle attitude angles. It is not

straightforward to obtain these measurements directly by on-
board sensors. In this section, we present a novel GPS/IMU-
based attitude estimation.

We define an inertial frame I (X,Y,Z) and a motorcycle
body frame B (x, y, z) as shown in Fig. 1(b). Let Θ :=
[φ θ ψ]T denote the attitude angles, that is, the roll, pitch
and yaw angles, respectively. The transformation from I to
B is considered as the Z-Y -X ordered Euler angle rotation.
The transformation relationship from frames B to I is [21]

CIB =

⎡⎢⎢⎣
cθ cψ − sψ cφ +cψ sφ sθ sφ sψ +cψ sθ cφ
cθ sψ cφ cψ +sθ sφ sψ − sφ cψ +sθ cφ sψ

− sθ cθ sφ cφ cθ

⎤⎥⎥⎦ .
Let PI(t) ∈ R

3 and VI(t) ∈ R
3 denote the position

and velocity vectors of the IMU in I, respectively. We
denote the IMU acceleration and angular rate measurements
in B as AB = [aBx aBy aBz]T ∈ R

3 and ωB =
[ωBx ωBy ωBz]T ∈ R

3, respectively. We obtain the
following kinematic motion equations for the IMU.

ṖI = VI , (14a)

V̇I = CIBAB + G, (14b)

φ̇ = ωBx + sφ tan θωBy + cφ tan θωBz, (14c)

θ̇ = cφ ωBy − sφ ωBz, (14d)

ψ̇ =
sφ
cθ
ωBy +

cφ
cθ
ωBz, (14e)

where G = [0 0 − g]T .
We denote the GPS position in I as PG ∈ R

3. From
Fig. 1(b), we obtain

PG = PI + CIB

⎡⎢⎢⎣
bp

0

hp

⎤⎥⎥⎦ , (15)

where bp and hp are the horizontal and vertical distances
between the GPS antenna and mass center G, respectively.
Since the motorcycle does not have suspension, we consider
the kinematic constraint of zero pitch angle, namely, θ = 0.
Therefore, we obtain the system output

y(t) = [PG θ]T . (16)

We define the state variable

X(t) :=
[
PT
I (t) VT

I (t) ΘT (t)
]T

∈ R
9

and re-write the kinematics (14) in a discrete-time form as

X(k) = X(k − 1) + ΔT f (X(k − 1),u(k − 1)) , (17)

where u(k) := [AT
B(k) ωT

B(k)]T is the IMU measurements
at the kth sampling time, ΔT is the data-sampling period.
The function f (X(k),u(k)) is given in (14) as

f (X(k),u(k)) =

⎡⎢⎢⎣
fP

fV

fΘ

⎤⎥⎥⎦ :=

⎡⎢⎢⎣
VI(k)

CIB(k)AB(k) + G

fΘ(Θ(k),ωB(k))

⎤⎥⎥⎦ , (18)
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Fig. 5. Experimental results of the balance controller with K = 20 and λ = 1. (a) Roll angle φ. (b) Roll angle rate φ̇. (c) Steering angle β.

where fP = VI(k), fV = CIBAB(k) + G, and

fΘ(Θ(k),ωB(k)) :=

⎡⎢⎢⎣
ωBx + tan θ (sφ ωBy + cφ ωBz)

cφ ωBy − sφ ωBz
sφ

cθ
ωBy + cφ

cθ
ωBz

⎤⎥⎥⎦ .
An EKF design is applied to the system (17) and (16).

The details of EKF implementation are similar to those in
[21] and we omit here due to the page limit.

V. EXPERIMENTS

We conducted all experiments using the Rutgers au-
tonomous motorcycle shown in Fig. 1(a). The stabilization
controller and the EKF design are implemented on an
onboard National Instruments (NI) CompactRIO real-time
system. A MEMS-based low-cost IMU device (IMU605,
MotionSense Inc.) provides the attitude rates and acceleration
information at a sampling rate of 120 Hz. The GPS (Novetal
RT2K, Novetal Inc.) gives the positioning information at a
sampling rate of 20 Hz with a resolution of around 2 cm.
The steering angle are measured by the encoder integrated
with the steering motor. We use a set of cable potentiometers
(Celesco SP1-25) to accurately provide the roll and yaw
angle measurements for comparison purposes. In experiment,
the rear tire is fully locked to achieve zero velocity constraint.
The measured signals from various devices are integrated and
synchronized through the CompactRIO’s FPGA module.

The balance control experiments were conducted indoors
and we used two cable potentiometers to provide the roll an-
gle measurements in real time. Fig. 5 shows the experimental
results. We introduced a disturbance roll angle (1.5 degs)
to push motorcycle aside and the controller turned steering
immediately. The motorcycle was then returned around the
equilibrium position finally.

We now show a validation of the DOA estimation by two
experiments. First, we set up a zero initial roll angular rate.
The design parameters of the sliding-mode controller are
K = 20 and λ = 1. By calculation, when φ̇ = 0 we find the
DOA boundary (e.g., curves in Fig. 4) is around 2.5 degs.
In the first experiment, we use the motorized support jack
to setup the motorcycle to start at 2.5 degs. In the second
experiment, we set the initial roll angle to be slightly larger

than 4 degs. Fig. 6 shows the experimental roll angle results.
The results shown in Fig. 6 clearly illustrate that for the
first experiment the controller can regulate the roll angle to
return back to the equilibrium position, while in the second
experiment, the motorcycle cannot be balanced and finally
supported by the motorized jack. To protect the motorcycle
from falling down, we set a 6-deg roll angle limit position
by the support jack in experiments.
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Fig. 6. Roll angle trajectory of experiments with two different initial roll
angle values

We conducted and tested the EKF-based attitude estima-
tion scheme on the Rutgers campus. We took the motorcycle
outside the building on a campus parking plot. We manually
swung the rear frame while at the same time turning steering
mechanism. Fig. 7 shows the experimental results of the
attitude angle estimates. The comparison results of roll, yaw
and pitch angles are shown in Figs. 7(a)-7(c), respectively.
The estimated roll and yaw angles are very close to the
real values. It is also clear that the pitch angle is indeed
around zero. For roll angle estimates, the maximum error
is around 1.4 degs of a range of 15 degs. For yaw angle
estimates, the maximum error is also around 1 deg for a
range of 5 degs. The large maximum yaw angle estimation
error is mainly due to that in experiments the potentiometer
were connected to a flexible vertical plate installed on
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Fig. 7. Experimental results of the EKF-based attitude estimation. (a) Roll angle φ. (b) Yaw angle ψ. (c) Pitch angle θ.

the motorcycle. We have noticed that during experiments,
the connected plate was deformed slightly and that could
increase the measurement errors. These experimental results
validate that the GPS/IMU-based attitude estimation scheme
provides an effective way to obtain the motorcycle attitude
in real time.

VI. CONCLUSION

We presented the balancing control analysis of a sta-
tionary riderless motorcycle system. We revealed geomet-
ric and kinematic relationship of the front wheel steering
mechanism of the motorcycle system. We presented the
analytical estimation of the domain of attraction (DOA) of
the stationary motorcycle system. We found that only by
steering, the DOA estimate is small and thus the balancing
control of stationary motorcycle is challenging. We also
discussed a GPS/IMU-based motorcycle attitude estimation
scheme by using an EKF design with kinematic constraints.
We implemented, tested and validated the balancing control
design, DOA analysis, and the attitude estimation scheme
on the Rutgers autonomous motorcycle. We are currently
developing a more precise analysis of the DOA estimates.
Extensively experimental testing of the analysis are also our
ongoing work.
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