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Abstract— A mobile manipulator often finds itself in an
application where it needs to take a close-up view before
performing a manipulation task. Named this as a coupled
active perception and manipulation (CAPM) problem, we model
the uncertainty in the perception process and devise a key
state/task planning algorithm that considers reachability condi-
tions jointly established from perception and manipulation task
constraints. By minimizing expected energy usage in body key
state planning while satisfying task constraints, our algorithm
is able to find an energy-efficient trajectory with less body
repositioning motion while ensuring the success of the task. We
have implemented the algorithm and tested it in both simulation
and physical experiments. The results have confirmed that our
algorithm has a lower energy consumption compared to a two-
stage decoupled approach, while still maintaining a success rate
of 100% for the task.

I. INTRODUCTION

In precision agriculture or various mobile manipulation
applications, high-resolution scene maps are often inaccessi-
ble before the task due to the expensive construction cost or
the non-static nature of the scene (e.g., target object moving
[1] or growing [2]). Due to the lack of detailed information
on the target object, a typical scenario arises in which the
robot first needs to obtain a close-up view of the object of
interest before planning the manipulation task. The close-
up view provides high-resolution images, facilitating the
precise recognition algorithm [3]. Based on the precise target
information, the mobile manipulator can determine where
and how the manipulation should proceed. The process of
obtaining the close-up view is an active perception problem.
Combining with manipulator task planning, it leads to a cou-
pled active perception and manipulation (CAPM) problem
because the probabilistic distribution of the perception result
and the end configuration of the robot in active perception
affect the subsequent manipulation problem.

Fig. 1 illustrates the CAPM problem using weed removal
as an application example where the task is to precisely burn
down the biologic center of the weed in the field using the
robot. The robot is a hand-eye mobile manipulator with a
quadrupedal platform. The robot has a low-resolution prescan
of the scene (similar to the background image on the left-
hand side in Fig. 1) to start the task, but the prescan’s
resolution is insufficient to determine the desired flaming
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Fig. 1: An illustration of CAPM problem scenario using the weed flaming
application.

point. With the knowledge of the rough target region of
interest (TROI), the robot first navigates towards it to get
a close-up view to determine the flaming target position.
We name this flaming position as the manipulation point
of interest (MPOI), which is shown as the red star in the
figure. Due to the uncertainty of MPOI, the robot has to
adjust its next task correspondingly: directly perform the
manipulation task (i.e. weed flaming) if the MPOI is within
reach or reposition its body for the manipulation.

The research question is whether this CAPM task planning
can be solved in an efficient manner. In this work, we formu-
late the CAPM problem and analyze four types of problem
using reachability analysis by designing the constraints of the
active perception and manipulation tasks. We model energy
usage in the CAPM problem and propose an algorithm
to minimize the expected energy usage by reducing the
body reposition motion. We have implemented our algorithm
and tested it in both simulation and weed-flaming physical
experiments. The experimental results have confirmed that
our algorithm has lower energy consumption compared to
a two-stage decoupled approach, while still maintaining a
success rate of 100% for the task.

II. RELATED WORK

For our task planning, determining the close-up view can
be achieved efficiently through active perception. Active
perception, by definition, is an intelligent data acquisition
process [4], which guides the robot to take intentional actions
to perceive the required information [5]. Numerous active
perception algorithms are developed for multiple purposes,
such as alleviating ambiguity or occlusion issues in object
recognition [6], [7], improving performance for UAV naviga-
tion [8], and multi-robot path planning [9]. The key challenge
for active perception is to define the scene-related criteria [4]
as feedback to planning and control (e.g., semantic character-
istic [8], cross-frame scan overlap [10]). For the vision-based
sensor, these criteria are achieved by adjusting the viewpoint



or the sensor field of view [11]. However, these works [6]–
[8] focus solely on finding the best view without considering
the subsequent task. We propose the next sufficient view
condition for the active perception constraint as feedback
for the robot state. This constraint can be integrated into
the planning framework, allowing joint optimization for both
active perception and manipulation tasks.

Mobile manipulators have been widely deployed for tasks
in factories such as pick-up and delivery [12] or indoor
applications such as opening doors [13]) due to their high
dexterity and mobility. For long-horizon tasks with sequential
nature like chores, the Task and Motion Planning (TAMP)
method is designed to discretize the action space into
symbolic action with continuous motion. We use a similar
formulation by designing the action sequence first and then
solving for the state parameters. When scene information
is not fully provided, deterministic TAMP approaches face
the issue of incorporating it into real-world applications.
Recently, there has been progress in the description of the
scene that contains uncertainty. Probabilistic modeling of the
robot/target state is developed and integrated into the TAMP
framework in [14], [15]. These methods have the advantage
of dealing with generating sequential action for complicated
task space, but they still passively receive the observation
instead of actively planning for observation that improve
system efficiency.

To reduce cost and labor dependency, robotic solutions
are integrated with precision agriculture applications that in-
clude scene perception [3], [16]–[18], robot navigation [19],
motion planning [20], and the deployment of aerial/ground
platforms [21]–[23]. However, due to the nonstatic scene
caused by the complex plant morphology, close-up-view
observation should be considered with manipulation in task
planning.

III. PROBLEM FORMULATION

Our goal is to find an efficient action plan and state param-
eters for a mobile manipulator to tackle CAPM tasks using
weed flaming as an example. To formulate our problem and
focus on the key issues, we have the following assumptions.

A. Assumptions

a.1 The mobile platform is holonomic.
a.2 We do not consider obstacle avoidance in body motion

planning because our weed removal robot stays on top
of weeds and crops in agriculture fields.

a.3 The robot does not execute body and arm motion
simultaneously to ensure the stability.

a.4 The energy usage of the arm motion is negligible
compared to that of the body.

a.5 Camera resolution is fixed.
Assumptions a.1 and a.2 ensure that the shortest trajectory

of base motion is always along the straight linear path from
the current state to the goal state in each task. Therefore,
the motion planning problem is reduced to a state planning
problem. For our platform, the arm weight is less than 10%

Body motion

Arm motion Holding

Fig. 2: Action transition diagram.

Motion Type Task/Goal

Body motion Navigation

Arm motion Observation
manipulation

Holding Manipulation

TABLE I: Action/task table.

of the overall platform. This condition establishes assumption
a.4, which will determine the energy model later in the paper.

B. Input, Key States, and Output

1) Initial Input: Prior to the task, the initial state of the
robot is given as input. Scene information is provided by a
low-resolution field prescan. This prescan can be obtained by
drone surveillance or cameras above ground. Let us define
the field as the robot workspace W ⊂ R3. With the low-
resolution prescan, the object recognition algorithm can be
applied to identify the TROI defined as RTROI

w ⊂ W as
illustrated in Fig. 1. Without loss of generality, we model
TROI as a half-ball above the groundplane centered on
Xw = [xw, yw, 0]

T ∈ W and with radius rw. It is possible
that the workspace contains more than one TROI and the
robot has to handle them one at a time. We focus only on
the next TROI in this paper, which is defined as,

RTROI
w = {X = [x, y, z]T : ∥X −Xw∥22 ≤ rw, z ≥ 0} ⊂ W.

RTROI
w is a primary input of our problem.
Remark: Xw does not necessarily overlap with MPOI

X̄w ∈ W because Xw is the geometrical center position
observed from the low-resolution prescan and X̄w is the
biological center. MPOI can be anywhere within TROI, i.e.
X̄w ∈ RTROI

w . X̄w cannot be obtained from the prescan data
because it requires a close-up view image for recognition [3].
RTROI

w guide initial body motion planning for active percep-
tion. Obtaining X̄w efficiently is the active perception part
of the problem, which is related to the notion of key states.

2) Key States: Our state representation includes both the
environment states and the robot states. While RTROI

w and X̄w

fully describe the static environment, the robot states are
dynamic. Denote the discrete time set K = {0, ..., kmax} as
the time index set for the entire problem. Let us represent the
state of the robot at time k as xk := [xe,k,xb,k]

T. For k ∈ K,
xk includes both the pose of the mobile platform (aka body)
xb,k ∈ Xb ⊂ SE(3) and the manipulator (aka arm) states
xe,k ∈ Xe ⊂ SE(3), where Xb and Xe are the state space of
body and arm. Denote the 3D position and orientation of the
body in quarternion as Xb,k and qb,k. For the arm state, xe,k

is represented by the pose of the end effector rather than by
the arm configuration in its joint space.

Key states refer to states acting as decision points that
significantly alter the operation of the robot. We consider
two types of key state. According to Assumption a.2 in
Sec. III-A, the motion of the robot body and the motion
of the arm are executed disjointly. The states that trigger the
switching between motion types are one type of key state.
Table. I and Fig. 2 explains the types of robot motion and the
switching relationship between them. The other type of key



states are the states associated with goal change even with
the same motion type. For example, if the arm switches from
an active perception task to a manipulation task, the state
associated with the switch is also a key state. Table. I shows
the correspondence between the type of motion and the goal.
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Fig. 3: Two possible key state operation sequences.

3) CAPM Operation Sequence: Fig. 3 illustrates two
typical operation sequences in key states. Initially, the robot
is in the starting state x0 and let k0 = 0 since the first
key state is the starting state. The robot moves its base to
xb,k1 , which allows it to move closer to RTROI

w . k1 is the time
index when the robot makes its first transition from body
motion to arm motion to obtain a close-up observation of
TROI. At time k2, the arm reaches xe,k2

to closely observe
RTROI

w and provides high-resolution images for the recognition
algorithm to estimate MPOI X̄w.

Depending on X̄w in relation to the pose of the robot,
there are two possible subsequent operations depicted as
upper and lower branches in Fig. 3. In the upper branch, the
robot finds that it can perform task manipulation (i.e. weed
flaming) without moving its body. Then it executes the arm
motion to reach the flaming pose xu

e,k3
(the subscript u means

upper branch) and stay there until k4 based on the flaming
duration requirement before moving to the next target. In the
lower branch, since the robot cannot reach X̄w, it must be
repositioned to xl

b,k3
(the subscript l means lower branch)

before the flaming operation. The following action sequence
is the same as that in the upper branch. Since the upper
branch and the lower branch have different time lengths, we
denote the time index for the ending state as kmax, which
should also be the last key state. It is clear that the key states
are non-deterministic because they are largely dependent on
the inherently probabilistic perception result X̄w.

4) Output: Let us define the set of key states as {xki |ki ∈
K′}, where K′ ⊂ K is the set of key state time indexes. In
fact, the output can be viewed as a sequence of task planning
with each task goal represented as a key state. As stated in
Assumption a.3 in Sec. III-A, our focus is not solving the
full motion plan, but the generation of key states. It is worth
noting that we cannot generate the entire sequence of key
states at once with initial input because of the uncertainty in
perception. In particular, as the output of active perception,
the value of MPOI X̄w observed in the key state of the arm
xe,k2

determines the follow-up key state choices. In addition,
xe,k2 depends on the previous body key state xb,k1 . Later,
we will explain those dependencies as active perception and
manipulation constraints. For now, this is sufficient for us to
introduce the following problem definition.

C. Problem Definitions
Definition 1 (CAPM Definition): Given the initial state

xk0
and TROI RTROI

w , sequentially plan for key states
xk1 , ...,xkmax , where k1, ..., kmax ∈ K′, to obtain MPOI X̄w

to guide and execute the subsequent manipulation task with
the minimum expected energy cost:

E

[ ∑
ki∈K′

c(xki−1
,xki

)

]
(1)

where E(·) is expectation function and c(·) is energy function
that will be defined later in the algorithm section.

Note that obtaining MPOI X̄w means that certain key
states need to satisfy the perception condition. Meanwhile,
the completion of the manipulation task means that the
task execution condition should be satisfied. Therefore, the
definition of the current problem is not complete and (1) is a
constrained optimization problem with conditions introduced
in the next section.

IV. ALGORITHM

Before we introduce our algorithm, it is important to
explain the task constraints associated with active perception
and manipulation.

A. Task Constraints
1) Active Perception Constraints: To obtain MPOI X̄w,

the robot must observe TROI Rw fully in the field of
view and be close enough so that the image can provide
sufficient details. This leads to view coverage condition
and target resolution condition. These two conditions, which
are dubbed the next sufficient view condition as a whole,
impose constraints on the pose of the arm xe,k because the
camera is mounted on the end effector. From now on, we
drop k from the notation (e.g. use xe instead of xe,k) for
brevity. k can be added back if the temporal index becomes
necessary. Denote TROI projection on the ground plane as
Rg

w = {RTROI
w |z = 0}.

View coverage condition: Keeping the entire Rg
w in the

camera field of view guarantees that X̄w is visible within
the image. Let the camera image resolution be umax × vmax

pixels. The entire image can be represented as a set of pixels
in a homogeneous coordinate I := {p|p = [u, v, 1]T, u ∈
[1, umax], v ∈ [1, vmax]}. Since the camera image covers the
ground plane in which the targets of interest lie, the rela-
tionship between the ground plane and the image plane can
be characterized as a homography transformation Hxe

from
the projective geometry. Hxe is parameterized by the pose of
the end effector xe. The camera field of view can be back-
projected to W as RFoV

w : RFoV
w = {X|X = (H−1

xe
)p, X ∈

W, ∀p ∈ I}. View coverage condition is defined as a binary
function:

1coverage(xe, R
TROI
w ) =

{
1, if Rg

w ⊂ RFoV
w

0, otherwise.
(2)

Target resolution condition: It is important to ensure
that the projection area of TROI Rg

w into the image coor-
dinate system is large enough so that the object recognition



algorithm can effectively detect MPOI X̄w. Rg
w is projected

to RTROI
I in the image coordinate system indicated by the

subscript I: RTROI
I = {p|p = HxeX, ∀X ∈ Rg

w}. Let the
area of RTROI

I in the image coordinate system be Area(RTROI
I ).

Define the area ratio of RTROI
I in the entire image as the target

resolution condition h(xe, R
TROI
w ):

h(xe, R
TROI
w ) =

Area(RTROI
I )

umaxvmax

≥ δ (3)

where δ is the threshold for the area ratio.
The overall active perception constraint is a combination

of view coverage condition and target resolution condition.
We name it as the next sufficient view condition (NSV)
1NSV(xe, R

TROI
w ) as follows,

1NSV(xe, R
TROI
w ) ={

1, if 1coverage(xe, R
TROI
w )

∧ (
h(xe, R

TROI
w ) ≥ δ

)
0, otherwise.

(4)

2) Manipulation Constraints: To execute the manipula-
tion task, for example weed flaming, it is necessary that the
manipulator maintains a certain pose for a given amount of
time, which are the spatiotemporal manipulation constraints.

End-effector pose condition for manipulation (EPMC):
This is the condition to determine whether the manipulator
can reach the target but not too close according to the task
requirement. Being too close may cause self-collision or
inability to execute weed flaming task without damaging the
robot. For a given MPOI X̄w and the state of the end effector
xe,k, we define EPMC as a binary function 1EPCM(xe,k, X̄w)
at time k ∈ Km, where Km ⊂ K represents a discrete time
set during the manipulation period. Recall that xe,k ∈ SE(3)
is the pose of the end effector, let Xe,k ∈ W be its position
components, and let the orientation of the end effector point
to the MPOI. Define εmin and εmax as the minimum and
maximum distance thresholds for the end effector to be able
to perform the task, respectively. EPCM is defined as

1EPCM(xe,k, X̄w) =

{
1, if ∥Xe,k − X̄w∥22 ∈ [εmin, εmax]

0, Otherwise.
(5)

Manipulation temporal condition (MTC): In a weed
flaming task, the manipulator is required to hold its position
for a certain time ξ to ensure sufficient heat transfer. Such
an MTC also exists in many other tasks. Recall that Km is
the time index set for the manipulator to maintain the pose
xe. Let us define MTC 1MTC(xe, X̄w) as a binary function,

1MTC(xe, X̄w) =

{
1, if 1EPCM(xe, X̄w) ∧

(
|Km| ≥ ξ

)
0, otherwise,

(6)

where | · | is set cardinality.

B. Inverse Reachability Region Analysis for Task Constraints

Based on the inverse kinematics of the arm, the task
constraints in Sec. IV-A can be used to determine the feasible
body states. Denote the joint space of the arm as Θ. For a
given body pose xb ∈ Xb and joint configuration, the forward
kinematics function of the arm maps to the last link pose

xe ∈ Xe, f : Θ × Xb → Xe and the inverse kinematics
function is f−1 : Xb × Xe → Θ. The inverse kinematics
function f−1(xb,xe) for a given end effector xe and a body
pose xb may not necessarily have a solution. We use the term
∃f−1(xb,xe) to indicate the logical truth that there exists a
solution.
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Fig. 4: A visualization of feasible body pose sets Ro and Rm with color
coded boundaries.

As shown in Fig. 4a, for a given TROI RTROI
w , the robot

body cannot be too far from it because it needs to satisfy
(3) with a fixed resolution camera (Assumption a.5). At the
farthest reachable point, the dark blue robot arm has to be
fully extended to provide good coverage of RTROI

w . Since the
robot can approach RTROI

w from any direction, this boundary
condition leads to the dark blue outer circular boundary in
Fig. 4b as a visualization in the X-Y plane. On the other
hand, the robot body cannot be too close to RTROI

w due to the
coverage condition in (2). Being too close cannot maintain
a full view of TROI. The boundary condition corresponds
to the close-up robot configuration and the inner circular
boundary in light blue in Figs. 4a and 4b, respectively. The
region between the two boundaries is the feasible body pose
set in the X-Y plane. Define Ro(R

TROI
w ) as the set of feasible

body poses, we have

Ro(R
TROI
w ) = {xb|1NSV(xe, R

TROI
w ) ∧

(
∃f−1(xb,xe)

)
,∀xe}, (7)

which shows as a blue donut shape co-centered with RTROI
w

in X-Y plane (Fig. 4b).
For a given MPOI X̄w, the body pose should be selected

such that the arm poses can satisfy (5) during the task. Since
(5) has both minimum and maximum distance thresholds,
the set of reachable body poses Rm also has both inner and
outer boundaries color coded in yellow and dark green, re-
spectively, as shown in Figs. 4c and 4d. Therefore, the shape
of Rm is also donut-like in the X-Y plane. Mathematically,
Rm is defined as follows,

Rm(X̄w) := {xb|1MTC(xe, X̄w) ∧
(
∃f−1(xb,xe)

)
,∀xe}. (8)

C. CAPM Problem Types in Mobile Manipulation

Defining Ro and Rm allows us to classify CAPM prob-
lems based on region relationships. Depending on robot
sensing and actuation configurations and task requirements,



we can classify the CAPM problem into four types, as
illustrated in Fig. 5. Before discussing the four types, it is
worth noting that Ro and Rm are not necessarily co-centered
in the X-Y plane, because the former is centered at Xw, the
center of TROI, and the latter is centered at MPOI X̄w.
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Fig. 5: CAPM problem types based on four different Ro (in lighter blue)
and Rm (in darker green) relationships.

Type I: As shown in Fig. 5 (a), Ro is much larger than Rm.
In fact, Rm is completely enclosed by the inner boundary
of Ro and Ro ∩Rm = ∅. This happens when the robot has
a strong perception capability that enables the observation
for complete TROI at a much further distance. In such
problems, active perception and manipulation are decoupled
and are essentially a two-step problem that can be solved
independently.
Type II : For Type II (Fig. 5 (b)), Ro has a significant overlap
with Rm, but none can fully enclose the other, which means
that both Ro and Rm are strict subsets of Ro∪Rm. In such
a coupled situation, if a robot can plan its body to be in
Ro ∩ Rm, then active perception and manipulation can be
addressed simultaneously.
Type III: Fig. 5 (c) is the type opposite to Type I where Rm

is much larger than Ro. In fact, Ro is completely enclosed by
the inner boundary of Rm and Ro∩Rm = ∅. Such a situation
occurs when the sensor is very nearsighted, similar to the
endoscope camera in minimally invasive surgery [24]. After
active perception, the robot needs to retreat for manipulation,
which leads to separate solving of active perception and
manipulation problem.
Type IV: Fig. 5 (d) shows the case where X̄w /∈ RTROI

w and
Ro ∩ Rm = ∅. This means that the prescan is erroneous or
is not up to date. Such a problem usually becomes a search
problem like [14] instead of a CAPM problem.

From the analysis, Type II problems fit the nature of
mobile manipulator with a common camera sensor, and this
is where the CAPM problem actually matters.

D. Energy Cost Function

In order to solve the CAPM problem while minimizing
the energy used, we model the energy cost for the task plan
defined by piecewise motion (as illustrated in Fig. 3) using
key states. For two key states xki

, xkj
, the energy cost is

a combination of a fixed initial energy cost for the mobile
platform and the variable energy cost. Since we assume that
the energy of arm movement is much lower than that of
body movement, the arm energy usage is ignored in the cost
function. The start energy cost is a fixed cost once movement
occurs. We follow the method in [25] to define the distance

metric between two states as

d(xki
,xkj

) = ∥Xb,kj
−Xb,ki

∥22 + β(1− ∥qb,kj
· qb,ki

∥),

where β ≥ 0 and determined by specific robot setup. Denote
the indicator function for body movement as follow:

1b-move(xkj
,xki

) =

{
1, if d(xki ,xkj ) > 0

0, otherwise.
(9)

The overall energy cost function is defined by the initial
energy cost(first term) and variable energy cost(second term)
in the case where body only move once between xki ,xkj :

c(xki
,xkj

) = 1b-move(xkj
,xki

) + γd(xki
,xkj

). (10)

E. Coupled two-stage key states planning

With the constraint and energy cost introduced, we are
ready to solve the CAPM problem. Intuitively, from the
perspective of reducing energy cost, the overall planned key
state sequence should contain fewer body movements. The
ideal situation is that the robot body only needs to move
once to satisfy the requirements of both active perception
and manipulation tasks, as shown in the upper branch of
Fig. 3. Through the analysis in Sec. IV-C, we know that it
is possible for the Type II problem. However, for unknown
X̄w, it is unlikely that this can be guaranteed.

From Sec. III-B.3, there are two key body states xb,k1

and possible xb,k3
that determine the energy use. These two

become the key decision variable in our planning problem.
However, they cannot be obtained in advance because X̄w

is unknown prior to close-up observation. The manipulation
constraint cannot be evaluated beforehand. More specifically,
xb,k1

and MPOI jointly determine whether additional body
movement is needed to achieve manipulation. Denote the
probability that the body state for active perception xb,k1

is
also feasible for manipulation as p(xb,k1

). Since we know
X̄w ∈ RTROI

w , we can establish a probability distribution for
the estimate of the target position X̂w ∼ N (Xw,Σw) using
the target region of interest described by the center Xw and
the radius rw. The probability p(xb,k1

) can be derived as

p(xb,k1) = p(xb,k1 ∈ Rm(X̂w)|X̂w) (11)

=

∫
p(X̂w)1(xb, X̂w)dX̂w, (12)

where 1(xb, X̂w) =

{
1, if xb,k1

∈ Rm(X̂w)

0, otherwise.
Except for xb,k1 , other states are deterministic given xb,k1

and X̄w. The minimum energy CAPM problem formulation
in (1) is reduced to the following:

min
xb,k1

,xl
b,k3

c0 + p(xb,k1
)cu + (1− p(xb,k1

))cl (13)

s.t. xb,k1
∈ Ro(R

TROI
w ) and xl

b,k3
∈ Rm(Xw), (14)

where costs c0 = c(xb,0,xb,k1
), cu = c(xb,k1

,xb,kmax),
and cl = c(xb,k1 ,x

l
b,k3

) + c(xl
b,k3

,xb,kmax). (14) are region
constraints specified in Sec. IV-B.

In addition, the state xb,kmax is the final state in which the
robot body should arrive. This state can be determined by



the current target and the next target’s TROI, e.g. the middle
point between two target’s center. If the current target is the
last target, xb,kmax is the predefined end pose given by the
user. By solving the above optimization, we obtain the key
states for the robot base. Also, finding the best manipulator
pose for a given base pose and intermediate states beyond
key states is trivial, and we omit the details here. A viable
method is proposed in [26]. After the robot executes the
key states xb,k1 and xe,k2 to perform active perception, the
precise MPOI X̄w can be perceived. If the planned location
for the next state xl

b,k3
does not satisfy the EPMC constraint,

re-planning is needed to find xl
b,k3

. The re-planning objective
is to minimize cl subject to xl

b,k3
∈ Rm(X̄w).

V. EXPERIMENTS

In the experiment, the mobile manipulator is a Boston
Dynamic Spot Mini™ with a Unitree Z1™ arm. The Spot
Mini™ with all attached accessories weighs 40 kg. Specif-
ically, the Unitree Z1™ arm only weighs 4.0 kg, which
consumes much less power than the base. We use IKFast
[27] to compute the inverse kinematics for the task constraint
regions Ro and Rm. The experiment includes two parts: the
simulation for the comparison of algorithm performance with
naive algorithms and physical experiments.

A. Simulation

In the simulation, we introduce the baseline algorithms,
the naive planners (Alg. a) and a variant of our algorithm,
the decoupled version (Alg. b) to compare with the proposed
algorithm (Alg. c) in Sec. IV-E. All algorithms minimize the
expected energy cost given start/end state xk0

, xkmax .
a. Deterministic planner. This planner considers the ge-

ometric center of TROI Xw as the MPOI, that is,
assume X̄w = Xw and solve minxb,k1

c(xb,k0
,xb,k1

) +
c(xb,k1 ,xb,kmax), subject to xb,k1 ∈ Rm(Xw).

b. Decoupled active perception and manipulation planner.
This planner has an action sequence of the lower branch
in Fig. 3, without considering the possibility of the
upper branch in the figure when solving the key states.

c. CAPM Planner that solves (13).
Other experiment parameters are chosen on the basis of

typical field conditions. We consider the operating height of
Spot Mini to be fixed at 0.8 m and region constraints are
reduced to ring-shaped regions parameterized by the inner
and outer circular boundary as in Figs. 4b and 4d. We ran-
domly generate N = 1000 different TROI Xw = (xw, yw, 0)
within the 3×3m2 workspace with radius rw ∈ [0.2m, 0.3m].
The MPOI is sampled through X̄w ∼ N (Xw,Σw) where
Σw = rwI2×2 the energy cost coefficient γ = 2. To simulate
the scenario with different weed density, for each sample
TROI we generate 5 different path lengths. The total number
of scene instances is 5N .

To compare the baseline and variants of our algorithm,
we employ two performance metrics: success rate (%) and
average energy cost (Avg(c)). Since our experiment is based
on the application of weed flaming and flaming is a static
manipulation without direct contact, the success of the task

is defined as the pose of the manipulator that satisfies the
EPMC constraint (5) with εmin = 0.05 and εmax = 0.10. The
success rate is the ratio between the number of successful
trials and the total number of trials 5N . The result is listed
in Table II. It is clear that although the baseline algorithm
(Alg. a) achieves a lower energy cost without considering
the active perception task, its success rate is the lowest
due to the lack of MPOI information. The decoupled active
perception and manipulation planner (Alg.b) successfully
executes all tasks, but the energy cost is higher than that
of our proposed CAPM planner (Alg.c). To compare the
energy savings of the coupled version algorithm with the
decoupled version, we define the energy saving coefficient
as ηbc = (Avg(c)b − Avg(c)c)/Avg(c)c where subscripts
a, b, and c refer to Alg.a, Alg.b, and Alg.c, respectively. It
is clear that the CAPM algorithm works better when the
distance traveled between targets is short (i.e., dense weed
distribution). This is desirable.

TABLE II: Simulation results of the 3-algorithm comparison

Avg(c) at different path length (m)
Alg. % 2.75 3.25 3.75 4.25 4.75

a 38 3.29 3.56 4.01 4.21 4.52
b 100 4.35 4.62 4.89 5.18 5.48
c 100 3.82 4.20 4.46 4.73 5.09

ηbc 0.14 0.10 0.10 0.09 0.08

B. Physical Experiment

We evaluate our system on the physical platform. The
CAPM planner is able to efficiently and precisely burn down
the weeds. More details are given in the video attachment.

VI. CONCLUSION AND FUTURE WORK

We presented a CAPM problem where a mobile ma-
nipulator must obtain a close-up view before performing
its manipulation task. Due to the fact that the perception
results determine the follow-up manipulation, the proposed
task planning approach can exploit the overlapping observa-
tion and manipulation reachable sets to reduce the overall
expected energy usage while guaranteeing the task success
rate. We implemented our CAPM algorithm and tested it
in both simulation and physical experiments. The results
confirmed our design and showed that our algorithm has
a lower energy consumption compared to a typical two-
stage decoupled approach while still maintaining a success
rate for the task 100%. In the future, we will improve the
proposed algorithm to handle multiple TROI and multiple
mobile manipulator problems.
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