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Abstract— We report an autonomous observation system with time. We implemented the system and conducted numerical
multiple pan-tilt-zoom (PTZ) cameras assisted by a fixed wid-  simulations. The experiment results show that our method
angle camera. The wide-angle camera provides large but low ;15erforms an existing work by increasing the number of

resolution coverage and detects and tracks all moving objés . . . .
in the scene. Based on the output of the wide-angle camera, observed objects by over 200% in heavy traffic scenarios.

the system generates spatiotemporal observation requesfsr Il. RELATED WORK
each moving object, which are candidates for close-up views )
using PTZ cameras. Due to the fact that there are usually much  The proposed autonomous observation system relates to

more objects than the number of PTZ cameras, the system first e existing works on active video surveillance systems and
assigns a subset of the requests/objects to each PTZ cameFae the frame selection problem

PTZ cameras then select the parameter settings that best sy . .
the assigned competing requests to provide high resolution In the recent decade, multiple camera surveillance sys-
views of the moving objects. We solve the request assignment tems, especially those with both static and active cameras
and the camera parameter selection problems in real time. T@  have attracted growing attention of research. Most of the
effectiveness of the proposed system is validated in compson 515 are master-slave camera configuration [1]. The master

with an existing work using simulation. The simulation resuts tati ide th L inf ti bout th
show that in heavy traffic scenarios, our algorithm increase static camera(s) provide the general information about the

the number of observed objects by over 200%. wide-angle scene while the slave active cameras acquire the
localized high-resolution imagery of the regions of inttre
I. INTRODUCTION This is a relatively new research area with many directions

Consider a wide-angle camera installed at an airpoff expl_ore. A very recent live system in this category can be
for human activity surveillance or in a forest for wildlife found in [2]. Our work belongs to this category.
observation. The wide-angle camera can provide large, low MOSt works in this category schedule the active cameras
resolution coverage of the scene. However, recognition a#Sed on simple heuristic rules. Zhou et al. [1] choose the
identification of humans and animals usually require closéPiect closest to the current camera setting as the next
up views at high resolution which need PTZ cameras. THPServation object. Hampapur et al. [3] adopt the simple
resulting autonomous observation system consists of a fixgguUnd robin sampling. Bodor et al. [4] and Fiore et al. [5]
wide-angle camera with multiple PTZ cameras as illustratefOPOSe @ dual-camera system with one wide-angle static
in Figure 1. The wide-angle camera monitors the entire fielg@Mera and a PTZ camera for pedestrian surveillance. Human
to detect and track all moving objects. Each PTZ camef@ftivities (walking, running, etc.) are prioritized based
selectively covers a subset of the objects. the preliminary recognition by the wide-angle camera. The

However there are usually more moving objects thaR TZ camera focus.es to the activity with the highest .priority
the number of PTZ cameras. With these competing Spgzr further ana!yS|s. Costello et al. _[6] are the first to
tiotemporal observation requests, the major challenghds tformulate the single camera scheduling problem based on
control and scheduling of the PTZ cameras to maximize tiRetwork packet scheduling literatures. The authors prepos
“satisfaction” to the competing requests. The system desig"d compare several greedy scheduling policies. Withreliffe
emphasizes the “satisfaction” to the requests which takes j €Nt assumptions towards thg observation scene and objects,
account 1) the camera coverage over objects, 2) camera zo$@fious scheduling formulation and schemes are proposed.
level selection, and 3) camera traveling time. We approach Lim et al. [7], the scheduling problem is formulated as a
the control and scheduling problem in two steps. In th€fa@ph matching problem. Bimbo and Pernici [8] truncate the
first step, a subset of the requests/objects is assigned G@ntinuous scheduling problem by a predefined observation
each PTZ camera. In the second step, each PTZ cam&gadline and each truncated camera scheduling problem is
selects its PTZ parameters to cover the assigned objects. {ggmulated as an online dynamic vehicle routing problem
formulate the problems in both steps and solved them in retVRP). However these methods assign only one object to

one active camera. Our system assigns multiple objects to

This work was supported in part by the National Science Fatiod individual cameras by selecting PTZ camera parameters such

under 11S-0534848 and 0643298, and in part by Microsoft. ~ that the camera coverage-resolution tradeoff is achiéieid.
Y. Xu and D. Song are with Computer Science and Engineering De

partment, Texas A&M University, College Station, TX 7784Bmail: also enabl_es group watching which is very meaningful in
yl xu@se. t anu. edu anddzsong@se. t anu. edu. many applications.
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Fig. 1. System architecture.

Very few work considers the selection of the zoom leveVation requests irO(n/e? + p?/e%) time, wheree is the
of active cameras and assigns multiple objects to inditiduapproximation bound. This algorithm inspires the directio
cameras. Lim et al. [9] construct the observation task faof simultaneous multi-object observation using multipleZzP
each single object as a “task visibility interval” (TVI) ems cameras as in this work.
on its predicted states and corresponding camera settings.

When TVIs have non-empty intersection, they are grouped I1l. SYSTEM ARCHITECTURE AND TIMELINE

to form a “multiple task visibility interval” (MTVI). Based
on the order of the starting time of (M)TVIs, a directed
acyclic graph (DAG) is constructed. The scheduling proble
is formulated as a maximal flow problem. A greedy algorith

Figure 1 shows the architecture of the system. The system
onsists o (p > 1) PTZ cameras and a wide-angle camera.
Il cameras are calibrated. The wide-angle camera detects

and a dynamic programming scheme are proposed to sol d labels all moving objects in the scene. The states of the

it. Zhang et al. [10] construct a semantic saliency map t8 jects (e'%" SLZ%’ pozltlondqntddveg)cny()j n tr,:ﬁ 2D |r(;1_atge
indicate the observation requests. An exhaustive algurithSloace are tracked and predicted. based on the prediction,

finds the optimal single frame that minimizes the informlattiothe obs_ervatlon_ request generatlon module generates the
loss. Sommerlade and Reid [11] use an information-theez)ret(i"o.mpetlng spat|0_temp0ral observation requ.ests (shadowed
framework to study how to select a single active camera%"'pses) for all objects. The_n the request assignment feodu
zoom level for tracking single object so as to balance th@ssigns a subset of the objects/requests to each PTZ camera

; : : by computing thep-frame settings that best satisfy the
h fl the tracked object and that of | rogt . d
chances o1 00sIng he fracked ohject and that ol 10os| rar quests. Each PTZ camera tracks the objects assigned to

of other objects. In contrast to these works, our schedulin X . .
) by selecting the PTZ parameter settings that best satisfy

dose not require accurate motion prediction for the entir : 27 .
duration of objects in the FOV as in [9]. The assignmen ese requests to capture high resolution images/videos of
i e objects.

of multiple objects to individual PTZ cameras is carried ou[

by selecting the camera parameters to achieve the tradeoff '9ure 2 ShOW_S the timeline of the system. An ob_servatlon
between coverage and resolution. cycle starts at timg = to. The states of the objects at

time t = tg + 6; are predicted, wherg, is termed as “lead

Our group focuses on developing intelligent vision systemme”. Based on the predicted states, the system generates
and algorithms using robotic cameras for a variety of applthe observation request at time= ¢y, + §; for each object.
cations such as construction monitoring, distance legrninA subset of these objects is then assigned to each PTZ
panorama construction and natural observation [12]. In treamera. Then the system starts to adjust the PTZ cameras
context of using PTZ camera for the collaborative observaccording to the request assignment. The camera traveling
tion, competing observation requests need to be covered time is bounded by the “lead timej; so that the cameras
camera frame(s) to maximize the overall observation rewarthtercept the objects at time = ¢y + ¢;. After that, each
This issue is formulated as the frame selection problefATZ camera tracks its object subset for tidie until the
[13]. A series of algorithms for single frame selection ($FSbeginning of the next observation cyclé. is termed as
problem have been proposed [13], [14]. Song et al. [15}ecording time” and is evenly divided inte, intervals with
propose an autonomous observation system in which a singlach of lengthr. Based on the state prediction, the PTZ
PTZ camera is used to fulfill competing spatiotemporatamera parameter selection module computes each camera’s
observation requests. In this work, multiple PTZ camerasetting at the end of each interval. Then each camera micro-
are used to increase the observation coverage. Recen#lgjusts its settings for up to time and prepares for the
an approximation algorithm for the multi-frame selectiomext interval. By capturing images/videos fér time, the
problem is proposed [16]. The algorithm coordingte® >  request assignment module re-initiates and the operations
1) camera frames to covet (n > p) competing obser- above repeatl’ = ¢, + ¢, is called one observation cycle.
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Fig. 2. System timeline. An observation cycle starts at to. Within each cycle timel’ = 6; + §,,, all PTZ cameras first take no more théntime to
adjust the PTZ parameters based on the request assignniemt.ebch PTZ camera micro-adjusts its parameters withamvedtr to track the assigned
subset of objects. This tracking lasis time until a new observation cycle starts.

IV. CAMERA SCHEDULING ALGORITHM weight, which indicates the emergency/importance level of

For p PTZ cameras, there are usually much more objectd1€ ¢-th object at timet. w;(¢) plays an important role in
With the competing spatiotemporal requests, we need to cop@lancing the observation service across all the objedls an
trol and schedule the PTZ cameras to capture sequences'dlf be discussed in details later.
images/videos that best satisfy the requests. Frame ieeiectB

and camera scheduling module is developed for this purpose. T o _
As shown in Figure 2, at the beginning of each recording

A. Observation request generation time ¢,., we need to coordinate PTZ cameras so that each
The wide-angle camera detects all motions and tracks the¢@mera is assigned a subset of the objects. We choose the
continuously. Each object is represented by an iso-orient@-frame settings that best satisfy all the requests at th.ti

elliptic region which is determined by a 4-parameter vectofn our system, the PTZ camera setting is parameterized by
a 3-vector,

Request assignment

[u,v,a,b]”, 1) c=[z,y,2]7,

where(u, v) indicates the center of the ellipse in the image, here
spacep andb denote the two axes of the ellipse, respectivelyessen
Thus the state of the object at timecan be represented by

(x,y) is the center point of the camera frame, which
tially indicates pan and tilt settingsis the resolution
of the frame. With a fixed aspect ratio (e.g., 4:3)also
x(t) = [u(t),v(t), a(t), b(t), u(t), o(t)]", (2) determines the size of the frame.
. . o ) . The “satisfaction” to the observation request is quantified
where(u(t), o(¢)) indicates the velocity of the ellipse centerpy 3 metric. We extend the Resolution Ratio with Non-
in the image space at time . partial Coverage (RRNPC) metric in [16] to cope with the

[17] is used to detect and label any moving objects. A we derive the definition of the satisfaction function as,
kernel-based mean-shift [18] algorithm is used to track the

segmented objects. For predicting the object state, each s(e,ri(t)) = wi(t) - I(c, m(t))'min(%,m (4)
labeled object is assigned a Kalman filter. A commonly used ) o _
constant velocity model is adopted. Kalman filter is alsgvherel(c,r(t)) is an indicator function,

able to handle short-term occlusion by predicting the dbjec 1 it st Co
motion. It is worth mentioning that a lot of existing trackin I(e,ri(t) = { = (5)
algorithms [19] can be applied here. 0 otherwise

Given the predicted state aith object at time! is The termmin(Z, 1) indicates the resolution ratio. It reaches

2i(t) = [as(t), 5:(¢), a5 (£), bi(t), 15 (£), 05 ()], the maximum of 1 when the resolution level of the camera
frame is better than that of the request. In (5) we abuse

we define the spatiotemporal observation request as, the set operatof in the wayr;(t) C ¢ indicates that the
ri(t) = ['&i(t),ﬁi(t),di(t)J;i(t)’Zi’wi(t)]T, 3) requested region is fully contained in that of the frame.

This means we do not accept partial coverage over the
whered(t), d(t), a;(t) andb;(t) define the desired rectangu-request. This is necessary for many purposes such as object
lar requested region in the same wayua®, a andb in (1); recognition and identification. To maximize the overall cov
z; indicates the desirable resolution andt) is the temporal erage of thep frames, we also restrict that any two camera



frames do not fully contain a request region in commorthe approximation bound. However, (8) does not consider
This constraint also avoids multiple count for one requesthe fact that within timer, the PTZ camera can only micro-

Therefore, the overall satisfaction ofpaframe setC?(¢t) =  adjust within a limited setting range. We assume the pan,
{c1(t), ca(t), ..., cp(t)} over n requests is the sum of thetilt and zoom motion of the camera are independent. The
satisfaction to each individual requestt),i = 1,2,...,n, reachable ranges for pan, tilt and zoom settings within time

n p T area, § and~, respectively. Then we rewrite (8) as,

s(CP(t)) = Z Z s(cu(t), ri(t)) (6) c*(t) = arg max Z s(e,ri(t)). 9
i=1 u=1 ceEaxX Xy
n p ri(t)ER;(t)
= Zzwi(t) - I(cy(t),r:(t)) - min( It is worth mention that most PTZ cameras’ pan and

zu(t) tilt motion is fast enough to keep tracking most objects in

Thus the request assignment problem is formulated as ﬁnd"q%eescene. For example, the empirically estimated tramsiti

the optimal p-frame settings that maximizes the overall® ed of thoe Panason_ic HCM 280 cameras®)®/sec.
satisfaction. for pan, 200°/sec. for tilt and 5 levels/sec. for zoom.

Considering the camera ha$x zoom levels and only less
CP*(t) = arg max s(CP(t)). (7) than50° FOV, the time for changing pan and tilt settings
cr® is much less than the time for changing the camera zoom.
This problem can be solved in [16] with running timeChanging the zoom level when the camera is moving also
O(n/e* + p?/e°), where ¢ is the approximation bound. creates significant motion blurring and requires re-faegsi
After assigning the requests by finding the optimdtame  Therefore, in practice, we only search for the pan and tilt
settings, we find the best camera-setting pairs that migmizettings ino x 4 while remain the zoom level.
the time for adjusting the PTZ cameras. We summarize the PTZ camera parameter selection
We summarize the request assignment scheme in Algseheme in Algorithm 2. Noté " | X;| < n.
rithm 1. We assume the states of the objects can be predicted

triVia“y ahead of time. This is Usua”y true for Kalman filte Algorithm 2: PTZ Camera Parameter Selection (PTZ-CPS)

Il
-

=1u

predictor. Input: Current time¢; i-th camera current setting ();
predicted object subset states
Algorithm 1: Request Assignment (RA) Xi(€+7)={21(§+7),22(§ +7),...}.

Output: i-th camera setting at tim&+ 7, ¢; (£ + 7).
1 Generate requestB;(é +7) = {ri(§ +7),72(E+7),...}
based onX; (¢ + 7); O(|X;|)
2 Computeq, 3,~ based ornj (€);

Input: Current timeo; predicted object states at time
57 (§ >0+ 51_)' X(&) = {£1(£)7£2(§)7 ooy ‘%"(5)}
Output: p-frame settingC’* (€) = {ci (€), ¢ (€), -, c5 ()},
with i-th camera being assigned an object subset.

1 Generate requests at timgR(¢) = ; ey T 3 Computec™ (£ +7) as in (9); O(1Xi|/€%)
5 q. BR(E) = {ri(&)r2(&), - ra (O} 4 Micro-adjusti-th camera based off (¢ + 1) by
based onX (¢); O(n) t=& 47 o(1)
2 ComputeC?*(¢) as in (7); O(n/eé® +p*/e%) - ’
3 Find pairs of camera and setting that minimize the camera
traveling time; . O(p® log p) Theorem 2: Algorithm PTZ-CPS runs inO(|X;|/¢®)
4 Adjustp cameras based ofi™*(¢) by ¢ = &; O()  time, where|X;| is the cardinality ofX;. Computing pa-

rameters for alp cameras take®(n/e3) time.
Theorem 1: Algorithm RA runs in O(n/€’ + p®/e + D Dynamic weighting

9 .
p*logp) time. If we keep the request weight in (3) unchanged, the system

C. PTZ camera parameter selection will create a “biased frame selection” model that always

After each camera is assigned a subset of objects tHéefers certain objects instead of balancing the camera re-
camera tries to track these objects for the recording timePurce for all objects. We address this issue by _c_aref.ully
0. This requires to select the camera parameter setting su%ﬂs'gn'ng the_ _temporal We'gh’ti(l_f) based on _tWO intuitions:
that the satisfaction is maximized for each recording irgter 1) Object exiting FOV sooner is of more importance and
Given each recording interval is represented[as ,¢) 2) object less satisfied in history is of more importance.

and thei-th camera is assigned a subset of objects witﬁhe first intuition is derived from the earliest deadlinetfirs
predicted states at time Xl-(t) — [21(1),d@2(t), ...} The (EDF) policy [6]. The policy addresses the emergency of the

corresponding observation requests are genergigt) — requests. The second intuition addresses sharing the aamer
{ri(t), r2(t), ..}. The camera setting at timtec* (¢), is then resource for all objects to achieve balanced observatien ov

determined by maximizing the satisfaction &(t), time. We define,

c*(t) = argmax Z s(c, (1)) (8) wi(t) = pi(t) - vi(t)
© rER®) wherey;(t) andy;(t) address the first and second intuitions,

This problem can be solved in [14] with running timerespectlvely. One candidate form gf(t) is,

O(|X;|/€%), where |X;| is the cardinality ofX; and e is 143(t) = min(p@ 1, 1), (10)



[—40°, 40°] with respect to the perpendicular of the side. The
tarect exit point | object speed is generated from a truncated Gaussian with a
- mean of 1.5 m/s and standard deviation of 0.5 m/s, which
~ is basically the speed of a walking people. The lengths of
the two axes of the ellipse that represents the object are
ﬂ\@ randomly generated from a randk5,2.5] m. Finally, the
desirable resolution of the object is generated from a range
[1,21] (magnification), which is also the Panasonic HCM280
A camera zoom range. The cameras run in 10 fps, which means
‘ 'goeiferpomt L 7 = 0.1 s. Thena = 30° and 3 = 20°. 5000 objects
arrive in the scene following a Poisson process with arrival
Fig. 3. Simulated scene. Each object is represented as iggeethnd rate A, which repr.esents the Co_ngestlon level of thg scene.
enters the scene from one of the four sides following a Poigsocess. The We set the lead timé; = 4s, which guarantees that in the
orientation is bounded withifi-40°, 40°] with respect to the perpendicular request assignment phase, camera adjustment is completed
22522 issl,d;?r'egﬁeg?]em maintains constant velocity andiie tto exit the before cameras intercept the objects. Wedset 65, which
is equivalent ton, = 60 frames. We set the parameter
ne = n, in (12) andp = 0.5 in (10) ande = 0.25. Two
where d; is the predicted deadline farth object to exit PTZ cameras are used, i.p.= 2. We set the approximation
the FOV and0 < p < 1 is a parameter that controls howbounde = 0.25.
quick the emergency increases. Whens d;, ui(t) — 1, as

time to deadline

W09

B. Metric and results

maximum.
To designy;(t) we need to first define the accumulative Ve compare our scheduling scheme with the earliest dead-
unweighted satisfaction (AUS);(t), line first (EDF) policy proposed in [6]. EDF is a heuristic
» scheme where the camera always picks the object with
) =33 s(¢j(tr), ri(tr)) (11) earliest deadline. With each congestion setting, 20 teists
wi(t) ’ carried out for average performance. We first compare the

=11, <t
. e . ) two schemes based on the ratio of nhumber of objects that
where the variable;, refers to the discrete times wheng.o qpserved for at least, /2 times to the total number

cameras take frames. The AUS essentially reflects how welt opiects pass through the scene. We term this metric as
an object is satisfied in history. We desigyit) as, M,,. This metric essentially indicates how many objects
B 7:(t) 12 the system can capture and observe for a period of time.
vi(t) = max(1 — Te ,0), (12) Figure 4(a) shows the comparison result. It is shown that
I¥vhen the Poisson arrival rateis small, i.e., there are few
objects in the scene, both scheduling schemes can reach
most best possible ratio (100%). Whanincreases, i.e.,

wheren, is a parameter indicating the extent to which a
object need to be observed. Wheitt) > n., v;(t) is zero

and we contend the object is fully satisfied and needs D traffic in th b h th ; ¢
observation any longer. Both;(¢) and v;(¢t) are bounded € traflic In the scene becomes heavy, the periormance o

in range|0, 1], which keeps the satisfaction metric in (4) aEDF deter|0ra'Fes S|gn|f!cantly quicker than our method. In
standard metric. the heavy traffic scenario, our method outperforms the EDF

by over 200%.
V. EXPERIMENT We also compare based on the satisfaction to the objects

We carry out a simulation for evaluating the schedulin@ince it takes into account not on.Iy the times that an object
scheme based on random inputs. The system is programngdbserved, but also the resolution of the observation. As
in Microsoft Visual C++. The simulation is carried out on amentioned earlier, the AUS as defined in (11) indicates how

Windows XP desktop PC with 2.0 GB RAM, 300 GB hardwell an object is satisfied. We define the second metric

disk space and a 3.2 GHz Pentium CPU. M, as the ratio of average AUS to the maximum possible
. satisfaction for each object (i.e:.). Figure 4(b) summarizes
A. Smulation setup the comparison based aW,. It is shown that our method

As shown in Figure 3, a simulatei) x 60 meters scene is deteriorates even slower asincreases. In the heavy traffic
constructed. There are 4 entrances on each side. The sizesoénario, our method outperforms the EDF by 250 %. This is
the entrance is 30 meter. Each object enters the scene throumgt surprising since in heavy traffic situations, objectelte
one side and maintains a constant velocity. Seven randdm be close to each other, where multi-object coverage has
numbers are needed to characterize each object. Firstmaich greater advantage.
random integer number ranging from 1 to 4 is generated The computation time for both request assignment and
to indicate which side the object enters through. Then @amera parameter selection depends on the valuke df
random real number if0,1] is generated to indicate the the heaviest scenario (i.e\,= 1), the maximum number of
entering point along the side. After that, the orientatidn oobject in the scene at any time is less than 100. In this case,
the object is determined by a random angle within the rangbhe computation time for request assignment is less than 0.5



100%7 Ty (L A—
-+ EDF
—=— Our method| \ —= Our method

-+ EDF

g‘ 50%

S
0% + T T T | 0% =

0o 025 05 075 1 0 0.25 05 075 1
Poisson arrival rate (#object/second) Poisson arrival rate (#object/second)

(a) Comparison of scheduling pol{b) Comparison of scheduling poli-
cies based oV/y,. cies based on/;.

second which is significantly less than The computation

sightful input, Q. Ni for implementing the motion detectjon
and C. Kim, J. Zhang, A. Aghamohammadi and Z. Bing
for their contribution to the Networked Robot Lab at Texas
A&M University.
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