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Abstract

Systems and Algorithms for Collaborative Teleoperation

by

Dezhen Song

Doctor of Philosophy in Engineering - Industrial Engineering and Operations

Research

University of California, Berkeley

Professor Ken Goldberg, Chair

Collaborative Teleoperation (CT) systems allow many users to simultaneously

share control of a single remote physical resource such as a robot or human ”explorer”,

with applications in education, health care, journalism, and entertainment. A primary

challenge is scalable methods for computing consensus commands. This thesis combines

results from two networked CT systems: one with a robotic webcamera (the Co-Opticon)

and one with a human explorer (the Tele-Actor).

In the Co-Opticon, n users share control of a single robotic pan, tilt, zoom webcam-

era. We formulate a new resource allocation problem and a series of exact and approximate

geometric algorithms for solving it. We propose a new similarity metric for the degree of

satisfaction for each user, which improves over the nonlinear Intersection Over Union (IOU)

metric. For an approximation bound ε, our best algorithm runs in O((n+1/ε3) log2 n) time.
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The algorithm can be distributed to run in O(1/ε3) time at each client and in O(n + 1/ε3)

time at the server. These algorithms also apply to satellite image selection problem with

applications in weather prediction, disaster response, search and rescue, surveillance, and

defense.

The Tele-Actor system allows groups of online users to collaboratively ”direct”

a human exploring a remote environment. We develop an unsupervised scoring metric

based on density based clustering to assess individual behavior in terms of leadership and

collaboration.

I have implemented both systems and they have been extensively field tested with

students and online users. Future research will focus on how new technologies such as

Internet 2, broadband videoconferencing, and wireless networking can be used to enhance

collaborative teleoperation and its applications in education and health care.

Professor Ken Goldberg
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Tele-operation

A “telerobot” is a remotely controlled machine equipped with sensors such as

cameras and the means to move through and interact with a remote physical environment.

NASA’s Mars Sojourner is a well-known example. The Sojourner telerobot, like almost all

telerobots to date, is controlled by a single human operator.

Since Nikola Tesla demonstrated a first radio-controlled boat in New York City

in 1898 [114], teleoperation has a history of more than a century. Goertz demonstrated

one of the first bilateral simulators in the 1950’s at the Argonne National Laboratory[42].

Remotely operated mechanisms have long been desired for use in inhospitable environments

such as radiation sites, undersea [7] and space exploration [9]. At General Electric, Mosher

[91] developed a complex two-arm teleoperator with video cameras. Prosthetic hands were

also applied to teleoperation [115]. More recently, teleoperation is being considered for
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medical diagnosis [8], manufacturing [41] and micromanipulation [105]. See Sheridan [108]

for an excellent review of the extensive literature on teleoperation and telerobotics.

Networked robots, controllable over networks such as the Internet, are an active

research area. In addition to the challenges associated with time delay, supervisory control,

and stability, online robots must be designed to be operated by non-specialists through

intuitive user interfaces and to be accessible 24 hours a day.

The Mercury Project was the first Internet robot [47, 46]; it went online in August

1994. Working independently, a team led by K. Taylor and J. Trevelyan at the University

of Western Australia demonstrated a remotely controlled six-axis telerobot in September

1994 [25, 62]. There are now dozens of Internet robots online, a book from MIT Press [49],

and an IEEE Technical Committee on Internet and Online Robots. See [63, 104, 67, 66, 70,

88, 57, 93, 77] examples of recent projects.

1.2 What is a Collaborative Teleoperation System

By “collaborative” we mean a system where a number of participants simultane-

ously share control. We define a “collaborative telerobot” as a telerobot simultaneously

controlled by many participants, where input from each participant is combined to generate

a single control stream.

Collaborative Telerobotics (CT) is a novel approach to teleimmersion and tele-

working. With CT, participants collaborate rather than compete for access to valuable

resources such as historical and scientific sites. Collaboration is a crucial ingredient for

education and teamwork. A scalable infrastructure for CT, compatible with the Internet,
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would allow large groups of students or researchers to simultaneously participate in remote

experiences. For example, CT can allow groups of disadvantaged students to collaboratively

steer a telerobot through a working steelmill in Japan or the Presidential Inauguration, and

allow groups of researchers to collaboratively steer a telerobot around a newly active volcano

or a fresh archaeological site.

Figure 1.1: Examples of Collaborative Control System

Figure 1.1 illustrates a non-remote collaborative control architecture. Before we

consider the details of problems, a preliminary question is: Can a group of many participants
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simultaneously driving the motion of a single resource achieve anything resembling coherent

control?

Anecdotal evidence with Cinematrix [35, 20], a commercial audience interaction

system, suggests that collaborative motion control is not only possible but fairly robust to

deviations in individual behavior. The inventors of Cinematrix, Loren and Rachel Carpen-

ter, performed a series of experiments in large theaters in the 1990s. Each audience member

is given a plastic paddle, colored red on one side and green on the other. By rotating his

or her paddle each player simultaneously provides input. Overhead cameras detect which

color is being presented by each participant in real time. The camera output is used to

drive a live display projected onto the front screen of the theater. The average level of red

or green conveyed by the group provides an aggregate audience signal that is re-computed

several times a second.

The theater is divided down the central aisle and a cursor is projected on the

screen. Participants on the right control the horizontal motion of the cursor, participants

on the left control the vertical motion. A large circle is displayed on the screen and the

audience is requested to move the shared cursor to trace a trajectory around the circle. Since

each player only controls one small component of the average signal, and the participants

are a heterogeneous group with different personalities, one might conjecture that the shared

cursor motion would resemble random Brownian motion.

But in repeated experiments, groups of participants were quickly able to adapt

their individual paddle signals to achieve coherent control of the shared cursor. Groups

were not only able to track given trajectories, but to play competitive games such as Pong
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and Pac Man, and even to collaboratively control an airplane flight simulator! Audiences

ranged from 5000 graphics professionals at Siggraph 1991 to groups of unruly high school

students in Pittsburgh PA.

1.3 Characteristics of CT Systems

In our report, although our research can be applied to a wider class of CT systems,

we focus on web-based CT systems in particular. Web-based CT systems utilize Internet

as their media and usually do not require users to install specialized software, which makes

them widely accessible. A CT system usually has the following characteristics,

• Sharing valuable resources and providing live access to remote environments:

As a special type of teleoperation system, CT allows multiple people to share a single

resource simultaneously. People are very interested in valuable resources like robots.

They want to learn more about robots and play more with them. The problem is that

they are too expensive to be affordable by a normal user. On the other hand, many

advanced robots are not fully utilized in research labs and universities. Web-based

CT systems can provide public access to those valuable resources, which is proven to

be very usefully for education. For example, Colton et al. [61] designed an online heat

exchanger in MIT, which allows a class of students to do experiments online.

• User interaction:

CT system’ interfaces usually provide functionality to allow people to see others’ de-
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cisions and to be involved in others’ decision processes. Users can interact with each

other using the bulletin boards, chat rooms and voice/video conferencing systems.

The exchanging of ideas helps them to get a better understanding of what is happen-

ing in the system. This feature can be useful for training and educational purposes.

For example, novice users can observe experienced users’ behavior and learn from it.

This also fits the idea of education: teamwork is a key element in education at all

levels [103, 23, 22].

• Collaboration improves reliability:

A CT system combines users’ requests to control a single shared device. This makes

CT systems less sensitive to individual errors and malicious behavior. The result

from Cinematrix [20] confirms that collaborative control may be surprisingly robust

in practice. What’s more interesting is that group diversity may actually improve

performance [44]. Similar effects have been observed in very different contexts [68].

1.4 Our Research on CT Systems

In this thesis, we focus on systems and algorithms for CT systems. We begin

with the two web-based CT systems developed in the ALPHA Lab, IEOR Department, UC

Berkeley:

• The Co-Opticon/Satellite Frame Selection: A controllable camera that allows many

clients to share control its camera parameters. Users indicate where they want to see
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by drawing rectangles on a panoramic image. The algorithm will comput an optimal

camera frame with respect to the user satisfaction function. (See: http://www.co-

opticon.net). The Satellite Frame Selection problem is a generalized version of the

Co-Opticon problem. A two-axis satellite camera can access a wide rectangular re-

gion of the Earth but can only take high resolution images on specific regions. For

multiple and competing client requests, how to set satellite parameters to maximize

total benefit presents variations of the Co-Opticon problem, and

• The Tele-Actor: A human equipped with audio/video device and controlled by a

group of online users. Users indicate their intensions by positioning their votes on a

320 × 240-pixel voting image during the voting interval. Votes are collected at the

server and used to determine the Tele-Actor’s next action based on the most requested

region on the voting image . (See: http://www.tele-actor.net).

We report algorithms developed for these systems. For the Co-Opticon system, we focus

on fast online algorithms. We develop approximation algorithms and derive formal approx-

imation bound that characterize the tradeoff between accuracy and solution. For Satellite

Frame Selection problem, we focus on exact algorithms that yield maximum reward. For

tele-actor system, our algorithmic efforts focus on how to compute consensus regions, mea-

sure user collaboration, and score individual user performance.
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Chapter 2

The Co-Opticon System: Interface,

System Architecture, and

Implementation of a

Collaboratively Controlled Robotic

Webcam

2.1 Introduction

Robotic webcameras with pan, tilt, and zoom controls are now commercially avail-

able and are being installed in dozens of locations1 around the world. In these systems, the
1See: http://www.x-zone.canon.co.jp/WebView-E/index.htm
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camera parameters can be remotely adjusted by viewers via the Internet to observe details

in the scene. Current control methods restrict control to one user at a time; users have

to wait in a queue for their turn to operate the camera. In this chapter we describe the

Co-Opticon, a new system that eliminates the queue and allows many users to share control

of the robotic camera simultaneously.

Figure 2.1: The Co-Opticon System Architecture. http://www.tele-actor.net/sharecam/

As illustrated in Figure 2.1, the Co-Opticon system includes the camera and two

servers that communicate with users via the Internet. Streaming video is captured at the

camera server and streamed back to the remote users using a Java interface. User responses

are collected at the Co-Opticon server and used to compute optimal camera positions, which

are sent to camera server to control the camera.

The Co-Opticon’s Java-based interface includes two image windows, one fixed for

user input and the other a live streaming video image. The interface collects requested

camera frames (specified as desired rectangles) from n users, computes a single camera
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frame based on all inputs, and moves the camera accordingly. Below we describe system

details and two frame selection models based on user “satisfaction”.

2.2 Related Work

The Co-Opticon is an example of Collaborative Telerobotics, in this case the teler-

obot is a camera with 3 degrees of freedom. In the taxonomy proposed by Tanie et al.

[21], the Co-Opticon is a Multiple Operator Single Robot (MOSR) system. Collaborative

Telerobotics is motivated by applications such as education and journalism, where groups

of users desire simultaneous access to a single robotic resource. Inputs from each user are

combined to generate a single control stream for the robot.

The Internet provides a low-cost and widely-available interface that can make

physical resources accessible to a broad range of participants. There are now thousands of

webcams, dozens of “online robots”, a book from MIT Press [49], and an IEEE Technical

Committee on Internet and Online Robots.

Online robots, controllable over the Internet, are an active research area. In addi-

tion to the challenges associated with time delay, supervisory control, and stability, online

robots must be designed to be operated by non-specialists through intuitive user interfaces

and to be accessible 24 hours a day; see [57, 63, 67, 66, 70, 77, 88, 93, 104] for examples of

recent projects.

Tanie, Matsuhira, Chong, et al. [21] proposed the following taxonomy for teleop-

eration systems: Single Operator Single Robot (SOSR), Single Operator Multiple Robot

(SOMR), Multiple Operator Multiple Robot (MOMR). and Multiple Operator Single Robot
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(MOSR). Most online robots are SOSR, where control is limited to one operator at a time.

Tanie et al. analyzed an MOMR system where each operator controls one robot arm and

the robot arms have overlapping workspaces. They show that predictive displays and scaled

rate control are effective in reducing pick-and-place task completion times that require co-

operation from multiple arms.

A number of SOSR systems have been designed to facilitate remote interaction.

Paulos and Canny’s Personal Roving Presence (PRoP) telerobots, built on blimp or wheeled

platforms, were designed to facilitate remote social interaction with a single remote operator

[95, 96]. Fong, Thorpe and colleagues study SOSR systems where collaboration occurs

between a single operator and a mobile robot that is treated as a peer to the human and

modeled as a noisy information source [36]. Related models of SOSR “cobots” are analyzed

in [2, 11, 36, 78, 109].

In an MOMR project by Fukuda, Liu, Xi, and colleagues [30], two remote human

operators collaborate to achieve a shared goal such as maintaining a given force on an object

held at one end by a mobile robot and by a multi-jointed robot at the other. The operators,

distant from the robots and from each other, each control a different robot via force-feedback

devices connected to the Internet. The authors show both theoretically and experimentally

that event-based control allows the system to maintain stable synchronization between

operators despite of variable time-lag on the Internet.

MOMR models are also relevant to online collaborative games such as Quake,

where players remotely control individual avatars in a shared environment.

In SOMR systems, one tele-operator or process controls multiple robots. This
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bears some relation to Cooperative (behavior-based) robots, where groups of autonomous

robots interact to solve an objective [3]. Recent results are reported in [18, 28, 102, 99].

One precedent of an online MOSR system is described in McDonald, Cannon and

colleagues [85]. For waste cleanup, several users assist in waste cleanup using Point-and-

Direct (PAD) commands [19]. Users point to cleanup locations in a shared image and a robot

excavates each location in turn. In this Internet-based MOSR system, collaboration is serial

but pipelined, with overlapping plan and execution phases. The authors demonstrate that

such collaboration improves overall execution time but do not address conflict resolution

between users.

In [44] Goldberg and Chen analyze a formal model of collaborative control and in

[45] describe Internet-based MOSR system that averaged multiple human inputs to simulta-

neously control a single industrial robot arm. In [50, 51] we propose the “Spatial Dynamic

Voting” (SDV) interface. The SDV collects, displays, and analyzes a sequence of spatial

votes from multiple online operators at their Internet browsers. The votes drive the motion

of a single mobile robot or human “Tele-Actor”.

Research on controllable webcams or Internet cameras are focus on two perspec-

tives: system architectures and applications. Desmet, Verkest, Mignolet et al. [26, 64, 119]

designed webcams using reconfigurable hardware and embedded software. They imple-

mented a secure VPN (Virtual Private Network) with 3DES encryption and Internet camera

server (including JPEG compression). Brooks and McKee [12] implemented an automated

camera which is placed during teleoperation using Visual Acts theory and architecture to

provide operators with task relevant information in a timely manner. The applications of
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webcams is not limited to surveillance [69] or teleconferencing [71, 76, 97]. Schmid, Maule,

and Roth [106] used a controllable webcam to perform all the tests for industrial robots

given by ISO 9283 “Performance criteria and related test methods”. Pollak and Hutter

[100] installed a Phillips webcam on an Olympus BX60 light microscope to record movies of

investigated samples. Zhang, Navab, and Liou [124] used webcams to creat an interactive

sales model for web customers.

In independent work, Kimber, Liu, Foote et al describe a multi-user robot camera

in [71, 76]. The application is designed for videoconferencing system. They use multi-

ple cameras in the systems: panoramic cameras and a pan-tilt-zoom camera. Panoramic

cameras generate a dynamic panoramic view of the conference site. Users control the pan-

tilt-zoom camera by drawing on panoramic view. The system is well suitable for videocon-

ferencing environment, where illumination condition is constantly good so that the image

quality of panoramic view can be guaranteed. We believe multiple camera systems are

good but not necessary for scenic sites where dynamic information is not necessary. The

panoramic image can be generated by the same pan-tile-zoom camera resulting in less band-

width requirement.

An earlier paper [112], published in the Workshop on Algorithmic Foundations

of Robotics, formulated the Co-Opticon problem geometrically and reported initial results

on exact algorithms: for n users and m zoom levels, the exact algorithm runs in O(n2m)

time. Har-Peled et al. [58] improved the exact algorithm to O(mn3/2 log3 n) and proposed a

near linear ε−approximation algorithm. In [111], we describe approximate and distributed

algorithms for solving the Co-Opticon frame selection problem.
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2.3 The Co-Opticon Interface

Figure 2.2: This figure illustrates the Co-Opticon’s Java-based user interface, which cur-
rently runs on most Windows based PCs. Users view two windows. One (not shown) dis-
plays a live video stream as captured by the robotic camera. The second window, illustrated
here, contains the user interface. The panoramic image is a fixed photo of the camera’s
reachable range of view. The snapshot above shows 6 active users listed in the scrollable
window at the left. Each user requests a camera frame by positioning a dashed rectangle
over the panoramic image. Based on these requests, the algorithm computes an optimal
camera frame (shown with solid rectangle), and servoes the camera accordingly to displays
the resulting live video stream. The horizontal bars indicate levels of user satisfaction as
described below. The system is installed in our research lab at Berkeley and moved outdoors
in June 2003. See: http://www.co-opticon.net

The Co-Opticon interface facilitates interaction and collaboration among remote

users. Users register online to participate by selecting a characteristic color and submitting

their email address to the Co-Opticon server, which stores this information in our database

and immediately sends back a password via email. The server also maintains a tutorial and

an FAQ section to familiarize new users with how the systems works.

The Co-Opticon interface contains two windows: The video window shows the

current camera view. Figure 2.2 illustrates the panoramic window and the Co-Opticon user

interface.
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The interface also facilitates chat between users. Each user can type in a short

sentence, which is displayed underneath his/her requested frame in the panoramic image.

A clocklike timer is located at the bottom right of the interface indicating the time before

the next camera movement (typically 5-10 seconds).

2.4 Hardware

The Co-Opticon server is an AMD K7 950Mhz PC with 1.2GB SDRAM connected

to a 100Mbs T3 line. The camera server is an AMD K7 950Mhz PC with 640MB SDRAM

connected to an 100Mbs T3 line at the remote site. It has a video-capture card, which

captures video at 320 × 240 resolution. It also serves as video server running InetCam 2

software to broadcast video.

We used the Canon controllable camera, model VC-C3. A comparable camera is

available from Sony. The Canon camera has motorized pan, tilt and zoom with a 10x power

zoom lens. It has PAL, composite, and S-video output with a resolution of 450 horizontal

lines. It can communicate with a PC via a RS232C link at 14,400bps. Its pan, tilt, and

zoom speed is 76 degrees per second at maximum and 0.5 degrees per second at minimum.

It has an accuracy of 0.5 degrees and a 380,000 pixel CCD array.

2.5 Software

As illustrated in Figure 2.3, custom software includes: (1) the Co-Opticon server,

(2) the camera control software and video capturing package at the video server, and (3)
2http://www.inetcam.com
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Figure 2.3: The Co-Opticon system software diagram.

the client side Co-Opticon Java applet.

The Co-Opticon server runs Mandrake Linux 9.0 and the Apache web server

1.3.26. All modules are written in GNU C++ with optimization of running speed. The

Co-Opticon server package consists of core process, Apache modules, communication pro-

cess, user databases, registration module, console/log module, and login CGI script. The

customized Apache module deals with communication between web clients and the server

via HTTP. It accepts the requested frame from a client and sends him/her the requested

frames of others every second. It can be viewed as a CGI script but with much higher
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scalability. The communication module connects to the video server via a socket link to

send camera control commands. A console/log module allows us to monitor and record

system status in real time.

The overall design emphasizes data sharing among all processes. Collaborative

control requires that all clients are able to see each other’s information in real time. This

is achieved by sharing memory segments among all server processes. Therefore the shared

memory segment managed by the core process is the key data structure.

Clients download two applets: the Co-Opticon applet and the InetCam applet.

The Co-Opticon applet is a customized software, which is shown in Figure 2.2. Part of the

frame selection computation is done at the client side, which is implemented in the Co-

Opticon applet. The Co-Opticon applet is written in Java 1.1.8 to ensure the compatibility

with most browsers. The InetCam applet is a third party software that functions as a video

terminal.

The video server package includes camera control, InetCam server, calibration,

and panoramic image generation. The camera control module written in Microsoft Visual

C++ is the primary module. It accepts camera control commands from the Co-Opticon

server and translates it into the RS232C protocol, which is built on packages provided by

Lawrence Berkeley National Laboratory3.
3http://www-itg.lbl.gov/mbone/devserv/
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2.6 Frame Selection Models

In this section, we will present two frame selection models. We begin with a review

of definitions and notation. More details can be found in the next chapter.

We consider two models for the optimal camera frame, the first is memoryless

based only on the current set of frame requests. The second is a temporal model based on

the history of frame requests with exponentially decaying weights.

2.6.1 Memoryless Frame Selection Model

In the Co-Opticon system, c is a vector of camera parameters that users can

control. Let c define a camera frame [x, y, z], where x, y specify the center point of the

frame, which is corresponding to pan and tilt, and z specifies size of the frame, which

corresponds to zoom level. c defines a rectangular camera frame (the camera has a fixed

aspect ratio of 4:3). User i requests a desired frame ri. Given requests from n users, the

system computes a single global frame c∗ that will best satisfy the set of requests.

We define a Generalized Intersection Over Maximum (GIOM) metric for user

“satisfaction” s(c, ri) based on how the user’s requested frame ri compares with a candidate

camera frame c. Each of n users submits a request. Let

s(c) =
n∑

i=1

si(ri, c) (2.1)

In the memoryless frame selection model, we want to find c∗, the value of c that maximizes

s(c) based only on the current set of requests:

max
c

s(c).
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In each motion cycle, we servo the camera to this frame.

2.6.2 Temporal Frame Selection Model

An alternative frame selection model is based on the history of user frame requests

over multiple motion cycles. We extend equation 2.1 using a weighted sum of the user

satisfaction. In this case total satisfaction is a function of time t:

s(c, t) =
n∑

i=1

αi(t)si(ri(t), c(t)) (2.2)

where the weight αi(t) for user i is a function of the user’s previous “dissatisfaction” level:

ui(t) = 1− si(ri(t), c(t)). One candidate form for weights is

αi(t) =
t−1∑

k=0

ui(k)
2t−1−k

which yields the recursive formulation:

αi(t) = ui(t− 1) + αi(t− 1)/2

If user i does not get satisfied by the camera frame computed during the current frame, his

weight αi(t), will increase over future motion cycles, eventually dominating the weights of

other users to satisfy his desired frame request. In this sense fairness is guaranteed over

time.

These frame optimization problems can be solved with exact algorithms [112] or

fast new approximation algorithms in next chapter.

Figure 2.4 shows four examples with the Memoryless Frame Selection model. Note

that the optimal frame grows in image (b) after a large requested frame is added. In Figure
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Figure 2.4: Examples using Memoryless Frame Selection model defined by equation 2.1.
Four different sets of requested frames and the corresponding optimal frame are displayed.
Note that the resulting frame is very different than what would be determined by simple
averaging, and that some requests never get satisfied.

2.4(c), two more frames are requested. Since they can not compete with the central group

of requested frames, the optimal frame remains unchanged. Figure 2.4(d) shows a case with

all but two requested frames disjoint, the algorithm selects a frame that covers the two

overlapping frames. Figure 2.4 also illustrates that some users can be starved indefinitely.

Figure 2.5 shows four examples with the Temporal Frame Selection model, where

frame selection is based on user satisfaction over multiple motion cycles. A sequence of
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4 motion cycles is illustrated with the same set of requested frames. Note that with this

model, the camera frame changes to balance overall user satisfaction over time.

Figure 2.5: Examples with the Temporal Frame Selection Model defined by equation 2.2.
The set of requested frames is held constant, but weights evolve so that the camera frame
changes to facilitate “fairness”.

2.6.3 Experiments

The Co-Opticon system went online in June of 2002 with the camera installed in

our Alpha Lab from June 8, 2002 to February 2003 as shown in the previous figures. An
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illustration of the total requested frames is shown in figure 2.6.

Figure 2.6: Data from June 8, 2002 to February 6, 2003.

Figure 2.6(a) displays all 4822 requested frames for the experiment duration. We

are interested in how user interest is distributed in the panorama. To compute the interest

distribution, we define g(x, y) be the interest for point (x, y) in gray scale, i.e. 0 ≤ g(x, y) ≤

255, rj : 1 ≤ j ≤ 4822 be the jth requested frame, and an indicator variable,

I(x, y, j) =





1 if (x, y) ∈ rj

0 otherwise

Say a darker point means more interest, the interest for point (x, y) is g(x, y), and define

gmax = arg max(x,y) g(x, y),

g(x, y) = 255(1−
∑4822

j=1 I(x, y, j)
gmax

).

We compute g(x, y) for each point in the panorama and generate the figure 2.6(b). As

shown in the figure, the most popular region is the center of the camera workspace, looking
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at the Adept robot arm in our lab, where one our colleague was often performing robot

calibration tests.

The Co-Opticon system was moved to an outdoor location on the UC Berkeley

campus in June 2003, and is available online at http://www.co-opticon.net. As shown on

data of June 28, 2004, we have 1360 registered users and have received 71050 requested

frames.

2.7 Conclusions

This chapter describes the Co-Opticon, a MOSR teleoperation system that allows

a group of Internet users to simultaneously share control of a pan, tilt, and zoom camera.

We described the Co-Opticon interface, system architecture, and experiments with two

frame selection models.

Chapter 3 describes how to solve the Frame Selection problem.



24

Chapter 3

The Co-Opticon Algorithms:

Approximate and Distributed

Algorithms for

a Collaboratively Controlled

Robotic Webcam

In last Chapter, we have introduced the “Co-Opticon” system, which is a new

system that eliminates the queue, allowing many users to share simultaneous control of the

camera. In this Chapter, we concentrate on how to solve the frame selection problem for

the Co-Opticon: how to find a camera frame that maximizes a measure of user satisfaction.
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Figure 3.1: Co-Opticon’s Java-based interface on the Internet. The user interface includes
two image windows. The lower window displays a fixed “panoramic” image based on the
camera’s full workspace (reachable field of view). Each user requests a camera frame by
positioning a dashed rectangle in the lower window. Based on these requests, the algorithm
computes an optimal camera frame (shown with solid rectangle), moves the camera accord-
ingly, and displays the resulting live streaming video image in the upper window.

As illustrated in Figure 3.1, the Co-Opticon java-based interface includes two

image windows. Problem input is the set of requested camera frames from n users. Problem

output is a camera frame that maximizes user satisfaction as defined in Section 3.2. We

present a grid-based approximation algorithm: given n triangulated user requests, and an

approximation bound ε, we analyze the tradeoff between solution quality and processing

speed and prove that the algorithm runs in O(n/ε3) time. We also develop an Branch and

Bound (BnB) like approach, which can reduce the constant factors at least by 70%. Using

newly developed data structure in database research, we can further improve the running

time to O((n + 1/ε3) log2 n).
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3.1 Related Work

The Internet provides a low-cost and widely-available interface that can make

physical resources accessible to a broad range of participants. Online robots, controllable

over the Internet, are an active research area. In addition to the challenges associated with

time delay, supervisory control, and stability, online robots must be designed to be operated

by non-specialists through intuitive user interfaces and to be accessible 24 hours a day; see

Chapter 2 for examples of recent projects.

In [45, 44], Goldberg and Chen describe an Internet-based MOSR system that

averaged multiple human inputs to simultaneously control a single industrial robot arm. In

[50, 51] Goldberg, Song, et al. propose the “Spatial Dynamic Voting” (SDV) interface. The

SDV collects, displays, and analyzes sets of spatial votes from multiple online operators at

their Internet browsers using a Gaussian point clustering algorithm developed to guide the

motion of a remote human “Tele-Actor”.

The Co-Opticon is a system for a robot camera, where operator inputs are frames

rather than points. The Co-Opticon suggests a nonlinear optimization problem with a

non-differentiable objective function. The structure of the problem is closely related to

the planar p−center Facility Location problem, which was proved to be NP-complete by

Megiddo and Supowit [86]. Using a geometric approach, Eppstein [32] gave an O(n log2 n)

algorithm for the the planar 2-Center problem. Halperin et al. [55] gave an algorithm for the

2-center problem with m obstacles that runs in randomized expected time O(m log2(mn)+

mn log2 n log(mn)).

In almost all nonlinear mathematical programming approaches, a constrained opti-
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mization problem is converted to a series of unconstrained problems using barrier or penalty

methods. Line search is then used to solve the unconstrained optimization problems. Al-

though there are many different ways of guiding search direction and step size, most of

these methods are based on derivatives [92].

Evaluating the objective function for a given candidate camera frame is related to

a special instance of the general “box aggregation” query over spatial objects in database

research [122]. The spatial objects could be points, intervals, or rectangles. Aggregation over

points is a special case of the orthogonal range search queries from computational geometry.

Agarwal and Erickson [1] provide a review of geometric range searching and related topics.

Grossi and Italiano [52, 53] proposed the cross-tree data structure, a generalized version of

a balanced tree, to speed up range search queries in high-dimensional space. The continuity

of the solution space of our problem makes it impossible to simply evaluate a fixed set of

candidate frames through queries.

Branch-and-bound (BnB) is a general problem solving paradigm, especially useful

for finding optimal solutions to most NP-hard combinatorial problems [123]. BnB can

efficiently reduce the search space as the computation proceeds. Lin and his colleagues

[75] applied BnB to solve protein backbone nuclear magnetic resonance peaks assignment

problem. Mitchell and Brochers analyze BnB performance with respect to 0 − 1 Mixed

Integer Non-Linear Programming problems [89]. A comprehensive review of BnB can be

found in Papadimitriou’s book [94].

There is also a connection with distributed manipulation. One branch of dis-

tributed manipulation uses potential fields defined as “potential-per-unit-area” acting on
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an object [14, 90]. It is possible to interpret the satisfaction function as a special “lifted”

potential field with some modifications.

In independent work, Kimber, Liu, Foote et al develop a multi-user robot camera

for videoconferencing [71, 76]. Similar to Sharecam, they formulate the frame selection for

multiple simultaneous requests as an optimization problem based on position and area of

overlap. To solve their version, they propose an approximation based on the bounding boxes

of all combinations of user frames. This algorithm requires exponential time and does not

provide formal bounds on approximation error.

In [112], Song, van der Stappen, and Goldberg gave the first algorithms for the

frame selection problem. We defined the Generalized Intersection Over Maximum (GIOM)

metric for user “satisfaction” based on how the user’s requested frame compares with a

candidate camera frame and reported an O(n2m) exact algorithm for a continuous pan and

tilt with discrete m levels of zoom. Har-Peled et al. [58] improved the exact algorithm

to O(mn3/2 log3 n) and proposed a near linear ε−approximation algorithm. In the present

chapter, we relax the assumption that zoom has to be discrete and report approximation

algorithms for continuous pan, tilt, and zoom, which runs in O(n/ε3) time. Chapter 2

describes system interface, architecture, and implementation.

3.2 Problem Definition

In this section, we formulate the Co-Opticon frame selection problem as an opti-

mization problem: finding the camera frame that maximizes total user satisfaction.

Let c be a vector of parameters that users can control. In the Co-Opticon system,
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frame c = [x, y, z], where x, y specify the center point of the input rectangle, which is

corresponding to pan and tilt, and z = Size(c) specifies size of the rectangle, which can be

used to control zoom. c defines a rectangular camera frame (the camera has a fixed aspect

ratio of 4:3). For frame c = [x, y, z], the width of the frame is 4z, the height of the frame is

3z, and the area of the frame is 12z2. User i requests a desired frame ri = [xi, yi, zi]. Given

requests from n users, the system computes a single global frame c∗ that will best satisfy

the set of requests.

Define w and h to be the width and height of the panoramic image, let Θ =

{(x, y) : x ∈ [0, w], y ∈ [0, h]} be the set of all reachable x, y pairs. Let Z = [z, z̄] be the

range of zoom. Set C = Θ × Z = {[x, y, z]|[x, y] ∈ Θ, z ∈ Z} as the feasible region of the

problem.

As described in [112], user “satisfaction” is a Generalized Intersection Over Max-

imum (GIOM) function. It is based on how a user’s requested frame compares with a

candidate camera frame. Recall that ri is the frame requested by user i, and let c = [x, y, z]

be a candidate camera frame. The metric is a scalar si ∈ [0, 1], the level of “satisfaction”

that user i receives. User i gets no satisfaction if the candidate frame does not intersect ri:

si = 0 when c ∩ ri = ∅. User i is perfectly satisfied when the candidate frame is identical

to ri: si = 1 when c = ri. When there is partial overlap,

si(ri, c) =
Area(ri ∩ c)

Area(ri)
min(

Size(ri)
Size(c)

, 1) (3.1)

If z = Size(c) is bigger, the candidate frame will be bigger. A sufficiently large z

can define a candidate frame that covers all requested frames: Area(ri∩c)
Area(ri)

= 1 for i = 1, ..., n.

However, user satisfaction is not necessarily high because a user wants to see the requested
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frame at a desired zoom level. The term min(Size(ri)
Size(c) , 1) = min(zi/z, 1) characterizes this

desire: it reaches its maximum of 1 if the candidate frame is the same or smaller than the

requested frame.

Each of n users submits a request. Let the total user satisfaction be

s(c) =
n∑

i=1

si(ri, c) (3.2)

We want to find c∗, the value of c that maximizes s(c). Since c = [x, y, z], we now have

a maximization problem: maxc s(c). We next present two grid-based approximation algo-

rithms to solve it.

3.3 Algorithms

We begin with a grid-based approximation algorithm and derive formal approx-

imation bounds that characterize the tradeoff between speed and accuracy. We present a

Branch and Bound like idea to reduce the constant factor in the algorithm. The speed of

the algorithm can be further improved using a new data structure. We then describe a

distributed version of the algorithm.

3.3.1 Approximation Algorithm

Since requested frames are drawn by hand by each user, an approximate solu-

tion may be acceptable. We propose an algorithm that searches a regular lattice for an

approximate solution c̃.



3.3. ALGORITHMS 31

Define the lattice as the set of points with coordinates,

L = {(pd, qd, rdz)|pd ∈ [0, w], qd ∈ [0, h],

rdz ∈ [z, z̄ + 2dz], p, q, r ∈ N} (3.3)

where d is the spacing of the pan and tilt samples, dz is the spacing of the zoom, and p, q, r

are positive integers.

To find c̃, we evaluate all (wh/d2)(g/dz) candidate points, where g = z̄ − z. Ac-

cording to Equation 3.2, it takes O(n) computing time to determine the satisfaction for a

single candidate frame c. The total amount of computation of the algorithm is

O((wh/d2)(g/dz)n). (3.4)

How good is the approximate solution in comparison to the optimal solution?

Specifically, what is the tradeoff between solution quality and computation speed?

Let c∗ be an optimal solution. Let ε characterize the comparative ratio the of

objective values for the two solutions:

s(c̃)/s(c∗) = 1− ε (3.5)

Since equation 3.2 defines a maximization problem, s(c∗) is always greater than or equal to

s(c̃) so the 0 ≤ ε < 1. As ε → 0, s(c̃) → s(c∗).

We will establish theorems that give an upper bound εu such that ε ≤ εu for given

d and dz. This characterizes the tradeoff between solution quality and computation speed.

We first prove lemmas based on 2 observations:

• As illustrated in Figure 3.2, consider a set of user requested frames ri, each with zoom

level zi. Now consider two candidate frames for the camera, ca, cb with za, zb such
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Figure 3.2: Example illustrating the lower bound on solution quality.

that for all i, ri ⊂ ca ⊂ cb and zi < za < zb. This case provides a lower bound where

s(cb)/s(ca) = za/zb. In general cases, some user frames ri will be included in cb but

outside ca, which will only increase the ratio.

• Now consider the smallest frame on the lattice that contains an optimal frame. Its

size is a function of the size of the optimal frame z∗, d, and dz, as derived in lemma

2.

We now prove these formally in the general case to obtain a bound on solution

quality.

Lemma 1. For two candidate frames ca = [xa, ya, za] and cb = [xb, yb, zb], if ca is within cb,

then s(cb)
s(ca) ≥ za

zb
.

Proof. Recall that ri is user i’s requested frame. Let

• ai = Area(ri),

• pai = Area(ca ∩ ri),
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• pbi = Area(ca ∩ ri), then pbi ≥ pai,

• Ia = {i|ri ∩ ca 6= ∅} be the set of users whose requested frames intersect with frame

ca.

• Ib = {i|ri ∩ cb 6= ∅} be the set of users whose requested frames intersect with frame

cb. Ia ⊆ Ib

• I ′ be the set of users whose requested frames intersect with frame ca and are bigger

than the ca, I ′ = {i|i ∈ Ia and zi ≥ za}.

• I ′′ be the set of users whose requested frames intersect with frame ca and are bigger

than the cb, I ′′ = {i|i ∈ Ia and zi ≥ zb}. I ′′ ⊆ I ′ ⊆ Ia because zb ≥ za.

we have,

s(ca) =
n∑

i=1

(pai/ai)min(zi/za, 1)

and because Ia ⊆ Ib,

s(cb) =
∑

i∈Ib

(pbi/ai)min(zi/zb, 1)

≥
∑

i∈Ia

(pbi/ai)min(zi/zb, 1)
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Therefore,

s(cb)/s(ca) ≥
∑

i∈Ia
(pbi/ai)min(zi/zb, 1)∑

i∈Ia
(pai/ai)min(zi/za, 1)

≥
∑

i∈Ia
(pai/ai)min(zi/zb, 1)∑

i∈Ia
(pai/ai)min(zi/za, 1)

=

∑
i∈I′′(pai/ai) +

∑
i∈Ia−I′′(pai/ai)(zi/zb)∑

i∈I′(pai/ai) +
∑

i∈Ia−I′(pai/ai)(zi/za)

≥
∑

i∈Ia−I′′(pai/ai)(zi/zb)∑
i∈I′−I′′(pai/ai) +

∑
i∈Ia−I′(pai/ai)(zi/za)

Define Sl =
∑

i∈I′−I′′(pai/ai)(zi/za). We know that

zi/za ≥ 1, ∀i ∈ I ′ − I ′′.

Then

∑

i∈I′−I′′
(pai/ai) ≤ Sl

So,

s(cb)/s(ca) ≥
∑

i∈Ia−I′′(pai/ai)(zi/zb)
Sl +

∑
i∈Ia−I′(pai/ai)(zi/za)

=

∑
i∈Ia−I′′(pai/ai)(zi/zb)∑
i∈Ia−I′′(pai/ai)(zi/za)

=
(1/zb)

∑
i∈Ia−I′′(pai/ai)zi

(1/za)
∑

i∈Ia−I′′(pai/ai)zi

=
1/zb

1/za
=

za

zb

Now, we are ready to find the smallest frame on the lattice that contains the

optimal frame.
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Lemma 2. Recall that d is the spacing of the lattice and dz is the spacing for zoom levels.

For any frame c = [x, y, z] ∈ C, there exists c′ = [x′, y′, z′] ∈ L such that c′ is the smallest

frame on the lattice that ensures c is within c′, which implies,

|x− x′| ≤ d/2 and |y − y′| ≤ d/2, (3.6)

z′ ≤ d3z + d

3dz
edz. (3.7)

If we choose d = 3dz, then

z′ ≤ z + 2dz. (3.8)

Proof. The center (point B in figure 3.3) of the given frame c must have four neighboring

lattice points. Without loss of generality, let’s assume the nearest lattice point of the center

is the top right lattice point, which is point O in figure 3.3. Other cases can be proven by

symmetric.

Since frame c′ is the smallest frame on the lattice that ensures c is within c′, (x′, y′)

has to be the closest neighboring lattice point of the (x, y) on the Θ plane, which implies

that equation 3.6 have to be true.

Recall that d is the spacing of the lattice. To ensure the point O is the nearest

lattice point, equation 3.6 mean the point B must satisfy following constraints,

|OB| sinα ≤ d/2, and |OB| cosα ≤ d/2. (3.9)

Let’s define frame ĉ = [x′, y′, ẑ] be the smallest frame containing frame c such that (x′, y′) ∈

Θ and ẑ ∈ R+. In other words, the frame ĉ is located at (x, y) lattice but with continuous

zoom ẑ. It is not difficult to find the relationship between c′ and ĉ:

z′ = dẑ/dzedz (3.10)
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Figure 3.3: Relationship between frame c and the smallest frame ĉ on the lattice that encloses
it. In the figure, α = ∠AOB, β = ∠AOC, and the frame c is centered at point B.

Since point F at (xF , yF ) is the bottom-left corner of the frame ĉ and point E at

(xE , yE) is the bottom-left corner of the frame c, the condition that the frame c is located

inside the frame ĉ is equivalent to following conditions,

xF ≤ xE and yF ≤ yE . (3.11)

Since the frames are iso-oriented rectangles and with same aspect ratio, their diagonal lines

have to be parallel to each other:

BE ‖ OF

Therefore, when 0 ≤ α ≤ β, BE is always on top of OF , if xF = xE , then yF ≤ yE . The

boundary conditions for the ĉ can be simplified:

• case 1: xF = xE if 0 ≤ α ≤ β, and

• case 2: yF = yE if β ≤ α ≤ π/2.

Figure 3.3 describes case 1. We draw a vertical line at point B, which intersects

x axis at point A and OF at point C. Since xF = xE , we know EF ‖ AC. Therefore, we
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have |CF | = |BE| and

|OC| = |OF | − |CF | = |OF | − |BE|. (3.12)

Also, since AC⊥OA, we have,

|OC| cosβ = |OB| cosα

⇒ (|OF | − |BE|) cos β = |OB| cosα

According to equation 3.9,

⇒ (|OF | − |BE|) cos β ≤ d/2

The aspect ration of the frame is 4 : 3 ⇒ cosβ = 4/5.

⇒ |OF | ≤ |BE|+ 5d/8

Similarly, we can get |OF | ≤ |BE|+ 5d/6 from case 2. Combine two cases, we know,

|OF | ≤ |BE|+ 5d/6.

Since |OF | = 5ẑ/2 and |BE| = 5z/2,

ẑ ≤ z + d/3.

Plug it into equation 3.10,

z′ ≤ d3z + d

3dz
edz.

If we choose d = 3dz, equation 3.7 can be simplified as,

z′ ≤ d z

dz
edz + dz ≤ z + 2dz
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Theorem 1. Recall z is the smallest allowable z value and d = 3dz. The approximation

factor of the deterministic lattice based algorithm ε is bounded below by some constant c,

0 ≤ ε ≤ c, where

c =
2dz

z + 2dz

Proof. Recall that,

• c∗ = [x∗, y∗, z∗] be the optimal frame,

• c′ = [x′, y′, z′] be the closest lattice point with the smallest zoom level that ensure c∗

is within c′.

• c̃ = [x̃, ỹ, z̃] be the lattice point found by the approximation algorithm,

Note that c̃ is the solution to: maxc∈L s(c). Since c′ ∈ L ⊂ C, we know that

s(c′) ≤ s(c̃). Therefore

s(c′) ≤ s(c̃) ≤ s(c∗)

Therefore, applying Lemma 1,

1− ε = s(c̃)/s(c∗) ≥ s(c′)/s(c∗) ≥ z∗

z′
.

Apply equation 3.8 of lemma 2, we have

z′ ≤ z∗ + 2dz.

Using this result, we have,

1− ε ≥ z∗

z∗ + 2dz
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On the other hand, we know z∗ ≥ z, so

1− ε ≥ z

z + 2dz
↔ ε ≤ 2dz

z + 2dz

Theorem 1 says that the approximation bound 2dz
z+2dz

is a monotonic increasing

function of dz. It characterizes the tradeoff between accuracy and computation speed for

the grid-based approximation algorithm:

Grid Based Approximation Algorithm

I. For a given approximation bound ε, compute the ap-

propriate lattice spacing: choose d = 3dz, according to

theorem 1, we set

ε =
2dz

z + 2dz
⇒ dz =

1
2
(

ε

1− ε
)z

This is the maximum dz that ensures the objective func-

tion value is bounded above (1− ε)s(c∗).

II. Compute the objective function value for each lattice

point, output the the lattice point with the largest ob-

jective function value as the approximated solution.

The relationship between solution quality and computation speed is summarized

by theorem 2.

Theorem 2. We can solve the Co-Option Frame Selection problem in O(n/ε3) for a given

approximation bound ε.
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Proof. Since d = 3dz and dz = 1
2( ε

1−ε)z, we need to evaluate all (wh/d2)(g/dz) = whg
(9/4)( ε

1−ε
)3z3

points. According to equation 3.2, each point will take O(n) time. Removing constants, ε

approaches zero, so computation time approaches O(n/ε3)

3.3.2 Branch and bound implementation.

In the grid-based approximation algorithm, we evaluate the objective function at

each lattice point. However, we may not need to check them all. The proof of the theorem

1 implies the following corollary,

Corollary 1. Given a frame ĉ is currently the best known solution, if a candidate frame

(x, y, z) does not satisfy the following condition,

s(x, y, z) ≥ s(ĉ)(z/z), (3.13)

then the candidate frame does not contain any optimal frame.

Proof. Assume that c∗ = [x∗, y∗, z∗] is the an optimal solution, if the candidate frame

contains it, then according to Lemma 1, the following is true,

s(x, y, z)
s(c∗)

≥ z∗

z
≥ z/z.

Since c∗ is the optimal solution, then s(ĉ) ≤ s(c∗). Therefore, Equation (3.13) is true if the

candidate frame contains an optimal frame. The corollary is true.

Corollary 1 allows us to improve the grid-based algorithm using a BnB like ap-

proach. We check if the condition in Equation (3.13) is satisfied. If not, we know that the

optimal frame is not contained in the candidate frame. Hence we can delete the frames that
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are contained in the candidate frame. Say that the candidate frame is c′ = [x′, y′, z′], then

the frames contained in c′ define a subset of solution space, which is Φc′ .

Figure 3.4: An illustration of the solution space formed by frames that contained in given
frame c′. The constant k is determined by the camera aspect ratio. For a aspect ratio of
4:3, k = 3.

As illustrated in Figure 3.4(a), if a frame (x, y, z) is contained in c′, it has to satisfy

the following set of conditions,

x− kz/2 ≥ x′ − kz′/2

x + kz/2 ≤ x′ + kz′/2

y − kz/2 ≥ y′ − kz′/2 (3.14)

y + kz/2 ≤ y′ + kz′/2

(x, y, z) ∈ Φ

Therefore, Φc′ = {(x, y, z)|(x, y, z) satisfies Equation (3.14)}. Recall that the solution space

Φ is a 3D rectangle, Figure 3.4(b) illustrates that the shape of Φc′ is a pyramid within the

3D rectangle and has its top located at the c′.

The volume of the pyramid is determined by its height, z′ of the candidate frame.

Bigger z′ means bigger candidate frame, which leads to a bigger cut in Φ if the candidate
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frame does not satisfy Corollary 1. This suggests that we should follow a descending order

in z axis when evaluating the lattice points.

Figure 3.5: An illustration of the BnB like approach.

Figure 3.5 illustrates how to perform the BnB like search using a 3× 3× 3 lattice.

We divide lattice points into different layers with respect to their z values. The search starts

with topmost layer and follows a descending order in z. In this lattice, we set d = 3dz,

which will be used as the default settings in the rest of section.

In each layer, we evaluate the objective function at each lattice point following

lexicographic order (i.e. the numbered sequence in layer 1 of Figure 3.5). After the evalua-

tion, we test if the point satisfies the condition in Corollary 1. If so, we name this point as

a survived node. Otherwise, this is a deleted node. If a node is deleted, it will cause some

nodes in next layer to be deleted also because of the shape of the pyramid. We name those

nodes in next layer as the children of the deleted node. Since we choose d = kdz (k=3 for

camera aspect ratio of 4:3), we have the following lemma,

Lemma 3. If a lattice point (x, y, z) is deleted and is not a boundary node, then the 9
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children in the next layer (frames with zoom at z − dz),

(x− kdz, y − kdz), (x− kdz, y), (x− kdz, y + kdz),

(x, y − kdz), (x, y), (x, y + kdz),

(x + kdz, y − kdz), (x + kdz, y), (x + kdz, y + kdz)

should also be deleted. The union area of 9 children covers the same area as the frame

(x, y, z) does.

Lemma 3 can be proved by checking if all 9 children are located inside the frame

(x, y, z) and their union region is identical to that of frame (x, y, z). Figure 3.5 also illustrates

this relationship. The central node in layer 2 is deleted and causes all 9 children to be

deleted. If the deleted node is a boundary node, the number of children is less than 9.

Combining the information above, we can reduce the computation effort required

and present the Bnb like approach. Recall that we need to evaluate the lattice point in

a descending order in z and follow a lexicographic order in xy plane. Recall that ĉ is the

currently best known solution. Initially, we set ĉ to be any arbitrary feasible frame and

every node in the lattice to be survived node.
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BnB like approach

for node (x, y, z)

if the node was deleted

if not the lowest layer

delete its childern in lower layer

end if

else

compute s(x, y, z) O(n)

if equation 3.13 holds

if s(x, y, z) > s(ĉ)

ĉ = (x, y, z)

end if

else

if not the lowest layer

delete its childern in lower layer

end if

end if

end if

end for

In the worst case scenario, this approach does not improve the complexity bound.

For example, if all requested viewing zones are identical to the accessible region, the ap-

proach is not able to cut any computation. Since such worst cases are rare, the approach

has its value. We will show the numerical test results in the result section.
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3.3.3 Efficient function evaluation using Functional Box Sum (FBS) query.

In this sub section, we improve the running time of the algorithm by reducing the

problem to Functional Box Sum (FBS) query and hence can be solved more efficiently. We

begin with the problem reduction.

Define the weight function

ωi(z) = (1/ai)min(
zi

z
, 1). (3.15)

Then Equation (4.1) can be rewritten as,

si(z) = ωi(z)Area(ri ∩ c).

Therefore, for a fixed zoom level, computing the objective function value for a given candi-

date frame can be viewed as a box aggregation problem over a group of requested viewing

zones. As shown in Equation (4.1), the query result should be a weighted sum of intersected

areas between the query window (i.e. the candidate frame) and requested viewing zones.

When the requested viewing zones are rectangles, this special box aggregation

problem can be solved by the functional box sum query introduced by Zhang, Tsotras, and

Gunopulos in [122]. Given a set of pairs consisting of a rectangular box and an associated

value function,

a functional box sum (FBS) query with a box q asks for the total value con-
tributed by all boxes r intersected by q, where the value contributed by a box r
is the integral of the value function associated with r over q ∩ r.

Our objective function (for a fixed zoom level) is a simple example of a value function. Zhang

et al. have shown that an FBS query in dimension δ can be reduced to 2δ dominance-sum
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queries. We say that a point (x1, y1) is dominated by a point (x2, y2) if and only if x1 ≤ x2

and y1 ≤ y2. Given a set of pairs consisting of a point and an associated value,

a dominance sum query with a point q asks for the sum of all values associated
with the points dominated by q.

The reduction is done by first reducing an FBS query to 2δ Origin Involved Func-

tional Box Sum (OIFBS) queries and then showing that each OIFBS query is equivalent

to a dominance sum query. The OIFBS query is a special FBS query that has bottom

left corner of the query window located at the origin, which is to the left and below all

rectangles. For δ = 2 in our case, Figure 3.6 from [122] shows how to convert an FBS query

into 4 OIFBS queries.

Figure 3.6: Convert an FBS query to 4 OIFBS queries in [122].

The transformation from an OIFBS query to a dominance sum query converts

rectangular spatial objects to point objects by assigning each vertex a point value function.

The point value function is a linear combination of integrals of value functions in the original

FBS query. An important contribution of [122] is that it shows how to generate those point

value functions based on the original value functions. The dominance sum query is then

used to compute the sum of point value functions for dominated points. Then an evaluation

of aggregated point value functions will give the result of the FBS query. In order to ensure

the validity of the transformation, the point value functions have to be closed under + or
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− operators. For example, a polynomial function can satisfy the condition: adding two

second-order polynomials will generate a new polynomial of the same order. Since point

value functions are linear combinations of integrals of the value functions in the original

FBS query, the requirement is equivalent to condition that the value function in the original

FBS query have to be closed under + or − operator.

The dominance sum query can be efficiently performed by preprocessing the re-

quested viewing zones into ECDF tree or its variations. The 2D ECDF-tree is a two-level

tree. The primary structure is a simple binary tree on the first coordinate of the points.

Each internal node v stores a key and the sum of the values associated with all the points

stored in the subtree rooted at v. These points are (evenly) distributed across the left and

right child of v. All points with a first coordinate smaller than or equal to the key are

in the subtree rooted at the left child of v, while the remaining nodes are in the subtree

rooted at the right child of v. In addition to the key and sum, the node v stores a secondary

structure. This secondary structure is a similar binary tree (1D ECDF tree) on the second

coordinates of all the points stored in the subtree rooted at v.

A query in the 2D ECDF-tree proceeds as follows. If the query point is located in

the left child, a recursive query of the left sub tree is executed. If the query point is located

in the right child, the query splits into two sub-queries. The first sub query is with respect

to the 1D ECDF tree in the left child, which takes care of points falling into the left child

and are dominated by the query point. The second sub-query is a recursive query on the

right sub 2D ECDF tree. The sum of the two queries gives the result. As shown in [10], a

query of the 2D ECDF tree requires O(log2 n) for n points. The construction of the tree
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takes O(n log2 n).

The basic ECDF-tree is a static data structure. Zhang et al. expanded it to the

ECDF-B-tree to allow dynamic updates. The ECDF-B-tree and its variations are proposed

as disk based data structures, which can also be modified to memory data structures. Zhang

et al. have shown that the query time of ECDF-Bq-tree, which is a variation of ECDF-B-

tree with query time optimized, is O(log2 n) for 2D. Therefore, each FBS query should also

be O(log2 n). Applying the FBS query, we have following algorithm,

Basic FBS Query Based Algorithm

i. For each zoom level z (g/dz in total)

a. Preprocess requested viewing zones into an

ECDF-Bq-tree O(n log2 n)

b. For each (x, y) pair (wh/d2 in total)

Do an FBS query with the frame (x, y, z)

to find s(x, y, z). O(log2 n)

ii. Report the frame (x, y, z) with the

largest FBS query value. O(1)

This will yield an algorithm with running time of O((g/dz)(n + wh/d2) log2 n).

However, we notice that it is not necessary to rebuild the tree for each zoom level. As

we mentioned earlier, the dominance sum query is used to compute the sum of point value

functions, which have to be closed under + or - operation. For Equation (4.1), we know that

our value function ωi(z) will not satisfy the condition for every zoom due to the difficulty

caused by the min function. However, at all zoom levels except z = zi, where ωi(z) changes

from zi/z to 1, the function ωi(z) is a polynomial function. This indicates that we only
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need to do a tree updates at zoom levels zi for i = 1, ..., n instead of rebuilding the whole

tree. The update involves a deletion of the old value function and an insertion of the new

value function at the corresponding nodes and leaves, which should take O(log2 n) for 2D

ECDF-trees. Therefore, we have following algorithm,

FBS Query Based Algorithm with Tree Updates

i. Construct an ECDF-Bq-tree for the smallest z

O(n log2 n)

ii. For each zoom level z in an ascended order

(g/dz in total)

a. Update the ECDF-Bq-tree if the zoom level

just cross one of zi for i = 1, ..., n, (∗∗)

b. For each (x, y) (wh/d2 in total)

Do an FBS query with the frame (x, y, z)

to find s(x, y, z). O(log2 n)

iii. Report the frame (x,y,z) with the

largest FBS query value. O(1)

Since there are n requested view zones, step (**) should cost O(n log2 n) in total.

Other steps will cost O((n + (g/dz)wh/d2) log2 n) in total. Set d = kdz and dz = 1
2( ε

1−ε)z,

the following theorem is true.

Theorem 3. Using an ECDF-Bq-tree, we can solve the Frame Selection problem with

rectangular requests in O((n + 1/ε3) log2 n) for a given approximation bound ε.
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3.3.4 Distributed algorithm

In the Co-Opticon system, n is the number of users online, which is also the number

of computers connected to our server. The larger the value of n, the more computation

power in the system. This suggests that a distributed algorithm, where each client shares

in the computation, can reduce overall computation time. In particular, we propose an

algorithm where each client searches a coarse lattice with appropriate offsets. The more

clients that participate, the more lattice points that are searched. The algorithm described

in the previous section can be divided into client and server components by dividing the

lattice L into n sub lattices Li, i = 1, ..., n, where sub lattice Li will be searched by user i.

Recall that [z, z̄] is the zoom range, define

oi = (i− 1)dz + z

be initial zoom offset for user i. Then the sub lattice Li is:

Li = {(pd, qd, rndz + oi)|pd ∈ [0, w], qd ∈ [0, h],

rndz + oi ∈ [z, z̄ + 2dz], p, q, r ∈ N}.

Therefore,
⋃n

i=1 Li = L. Let s∗i be the optimal solution given by ith user, the server should

do the following.
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Server Algorithm

I. Compute the dz, set d = 3dz,

II. Send all dz, d, and all requested frames to clients,

III. Wait until all clients send their solutions {s∗1, ..., s∗n}

back and pick the largest.

The ith user should do following after receives dz, d, and requested frames from

server,
Client Algorithm

I. Compute zoom offset oi.

II. Evaluate objective function with respect to sub lattice

Li.

III. Send the s∗i , the optimal on lattice Li to server.

Since each sub lattice only contains 1/n points of L, the computation complexity

is,

Theorem 4. Each client runs in O(1/ε3) time and the server runs in O(n + 1/ε3) time.

We distribute computation to client computers under the risk that some clients

may drop out the system in the middle of the computation. One can also see from the

algorithm that the speed of computation is limited by the slowest client. We may not have

the luxury to wait for the slowest client to send his/her result back to server. Therefore,

we are interested in the algorithm performance if one or more clients fail to submit their
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computation results before a time-out.

Theorem 5. If one client fails to submit his/her result, the approximation bound ε will

gracefully increase from 2dz
z+2dz

to 3dz
z+3dz

.

Proof. Without loss of generality, let’s assume user i drops out. Let c′ = [x′, y′, z′] ∈ L−Li

be the smallest frame that ensures c∗ is within c′ and c̃ be the optimal found on lattice

L− Li. We consider two scenarios:

i). c′ /∈ Li. Then

1− ε =
s(c̃)
s(c∗)

≥ s(c′)
s(c∗)

≥ z

z + 2dz
>

z

z + 3dz

still holds. Therefore ε < 3dz
z+3dz

.

ii).c′ ∈ Li.
s(c̃)
s(c∗) ≥

s(c′)
s(c∗) is invariant. From the result of Lemma 1, we know

s(c′)
s(c∗) ≥ z∗

z′ . Since c′ ∈ Li, equation 3.10 will not hold. Instead, for any frame c′ ∈ Li,

z′ = dẑ/dzedz + dz.

Then

z′ ≤ z + 3dz.

Similar to the proof of Theorem 1, we have

1− ε =
s(c̃)
s(c∗)

≥ z

z + 3dz
.

Hence, ε ≤ 3dz
z+3dz

It is good to see that the approximation bound does not change dramatically

after one client drops out of the system. In fact, the proof of theorem 5 shows that the
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approximation bound change is very small. We can also extend the proof to cases where

more than one user drop out.

3.3.5 Numerical Experiment

We have implemented the algorithms in section 3.3.1, 3.3.4, and 3.3.2 on a PC

laptop with 1.6Ghz Intel Centrino CPU and 512MB RAM. The algorithm is programmed

in Microsoft Visual C++.

Random inputs are generated for testing, which are generated in two steps. First,

we generate four random points, which are uniformly distributed in Φ. The four points

represent locations of interests, which are referred as seeds. For each seed, we use a random

number to generate a radius of interest. Then we generate requested regions in the second

step. We generate a requested region using four random numbers. One of them is used

to determine which seed the request will be associated with. two of them will be used to

generate the location of the request , which are located within the corresponding radius of

the associated seed. The remaining random number is used to generate resolution for the

request.

Figure 3.7 shows the algorithm’s result for a random example with 16 requested

frames.

We compare the approximation algorithm to the exact algorithms in Chapter 4.

Figure 3.8 illustrates the speed comparison between the approximation algorithm and the

exact algorithm. The implementation is the basic grid based algorithm in section 3.3.1 that

does not use the BnB like approach. In this test, we set w = h = 500, z = 40, z̄ = 80, and
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Figure 3.7: Sample output of algorithm with 16 requested frames and dz = 2. The shaded
frame is optimal.

k = 3. The result is conformal to our analysis. The computation time for approximation

time is linear with respect to the number of requests with its slope determined by the

approximation bound.

We have also tested the effectiveness of the BnB like approach in section 3.3.2

using the same settings. We define

γ =
Computation Time using BnB

Computation Time using Basic Grid

as the performance index variable. Again, we use randomly generate requested viewing

zones. Each data point in Figure 3.9 is an average of 5 iterations using different requested

viewing zones. Figure 3.9 shows that γ is not sensitive to user number n but is very

sensitive to the approximation bound ε. If ε is smaller, γ gets smaller, too. This is desirable

because smaller ε means finer grid with more computation. If the number of the requested
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Figure 3.8: Speed comparison between approximation algorithm and exact algorithm in
Chapter 4.

viewing zones is small (i.e n = 5), the overhead cost of BnB like approach dominates the

computation, the desirable trend does not appear until the ε is small enough. It worths

mentioning that the effectiveness of the BnB like approach also depends on the z. If z = 0,

the BnB like approach fails to cut the computation time. Fortunately, z = 0 means the

satellite can see things infinitely small, which will not happen. In our settings, the BnB like

approach can speed up the computation at least by three time.

Figure 3.10 shows how solution quality decreases as network clients fail, based

on the example in figure 3.7. This supports the analysis in the previous section: the

approximation algorithm degrades gracefully with client failures.

3.4 Conclusions

We present new algorithms for the ShareCam Problem: controlling a single robotic

pan, tilt, zoom camera based on simultaneous frame requests from n online users. We
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Figure 3.9: Efficiency of the BnB like approach.

formalize the problem with continuous pan, tilt, and zoom. With approximation bound ε,

the algorithm runs in O(n/ε3) time.

We also show that the algorithm can be distributed to run in O(1/ε3) time at each

client and in O(n + 1/ε3) time at the server. Unlike computing with multiple processors

in a single supercomputer, distributed computing over the Internet requires input from a

variety of heterogenous processors, each with different and varying communication delays.

We show that the grid-based algorithm handles client failures gracefully.

In our application, speed is a more important issue than accuracy because the

responsiveness of the web camera is a critical performance index. However, there are other

applications of Frame Selection problem, where an exact solution may be desirable. In

Chapter 4, we present the exact algorithms with a more general metric for Frame Selection

problem.
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Figure 3.10: Performance of the Distributed Algorithm: solution quality as network clients
fail. Each data point is an average of 10 runs with random dropouts. Initially there are
16 clients and 16 requested frames as shown in the previous figure. Here we plot solution
quality as more and more clients fail to complete their lattice searches. Note that solution
quality decreases, but not dramatically: even when only one client remains (after 15 have
failed) searching only one coarse lattice is enough to find a reasonable solution.
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Chapter 4

Exact Algorithms for Automated

Satellite Frame Selection

4.1 Introduction

The first commercially-available high-resolution optical satellite, IKONOS, was

launched in 1999 [27]. Since then, satellite imaging has developed into a rapidly growing

industry. According to the data from the Imaging and Geospatial Information Society

[121], the market is $2.44 billion in 2001 and growing at a rate of fifteen percent annually.

Clients include weather prediction, search and rescue, disaster recovery, journalism, and

government. Commercial satellites are equipped with sophisticated cameras, which allow

them to take high-resolution images as they fly over the Earth. Commercial cameras offer

pan, tilt, and zoom (image resolution) control. Near Real Time (NRT) Imaging refers to

freshly captured images that are delivered as quickly as possible, depending on the satellite’s
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Figure 4.1: The Satellite Frame Selection (SFS) problem: each time window defines the
camera’s possible field of view. Client requests for images are shown as dashed rectangles.
Given a set of requests, the objective is to compute the satellite frame that optimizes the
coverage-resolution metric. The solution in this case is illustrated with a solid rectangle.

trajectory: at any given time, the camera’s field of view is restricted to a zone on the Earth’s

surface. During each time window, a number of client requests for images are pending, and

only one image can be captured. We consider the problem of automatically selecting pan,

tilt, and zoom parameters to capture images that maximize reward.

The Satellite Frame Selection problem is illustrated in Figure 4.1. The camera

image frame is a rectangle with a fixed aspect ratio. Input is the set of n iso-oriented

requested rectangular regions from users. We propose a reward metric based on how closely

a requested viewing zone compares with a candidate satellite image frame. The metric is

proportional to the intersection of the candidate frame and the requested viewing zone and

to the ratio of the resolution of the candidate and the request. Satellite Frame Selection

is a non-linear optimization problem; we exploit the structure of the problem to develop
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polynomial time algorithms that compute the exact solution for cameras with discrete and

continuous resolution levels.

4.2 Related work

Satellite Frame Selection is related to problems in job scheduling, facility location,

spatial databases, videoconferencing and teleoperation.

The Satellite Space Mission problem (SM) [54] is to select and schedule a set of

jobs on a satellite. Each candidate job has fixed duration, available time window, and

weight. The goal is to select a feasible sequence of that jobs maximizes the sum of weights.

This combinatorial optimization problem is known to be NP-hard. Recent research [29, 37,

59, 117] on the SM problem and its variations focuses on developing exact and approximate

methods using numerical methods such as column generation, Tabu search, and genetic

algorithms.

Lemaitre et al. [73] study a related problem for the Earth Observing Satellite

(EOS), which has a three-axis robotic camera that can be steered during each time window.

Given a set of requested zones, they consider the problem of finding a trajectory for the

camera that will maximally cover the requested zones (they do not consider variations in

zoom/resolution). Their coverage problem is analogous to planning optimal routes for lawn

mowers and vacuum cleaners [38]. Researchers have proposed greedy algorithms, dynamic

programming algorithms, and methods based on constraint programming and Local Search.

In our model, the time window is shorter and the objective is to servo the camera to a single

optimal position with optimal zoom/resolution setting.
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The structure of the SFS problem is related to the planar p−center problem, which

Megiddo and Supowit [86] showed to be NP-complete. Given a set of point demand centers

on the plane, the goal is to optimally locate p service centers that will minimize the worst

case travel distance between client and server. Using a geometric approach, Eppstein [32]

found an algorithm for the the planar 2-Center problem in O(n log2 n). Halperin et al.

[55] gave an algorithm for the 2-center problem with m obstacles that runs in randomized

expected time O(m log2(mn) + mn log2 n log(mn)).

The SFS problem is also related to “box aggregation” querying in spatial database

research [122]. The spatial objects could be points, intervals, or rectangles. Aggregation over

points is a special case of the orthogonal range search queries from computational geometry.

Agarwal and Erickson [1] provide a review of geometric range searching and related topics.

Grossi and Italiano [52, 53] proposed the cross-tree data structure, a generalized version of

a balanced tree, to speed up range search queries in high-dimensional space. The continuity

of the solution space of our problem makes it impossible to simply evaluate a fixed set of

candidate frames through queries.

In the multimedia literature, Kimber and Liu et al. describe a multi-user robot

camera for videoconferencing [71, 76]. They formulate frame selection for multiple simulta-

neous requests as an optimization problem based on position and area of overlap. To solve

it, they propose an approximation based on comparing the bounding box of all combina-

tions of user frames. The main concern of their algorithm is speed rather than accuracy.

Although they did not provide bounds on their approximation, their approach is sufficient

for videoconferencing applications.
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Our lab at Berkeley is studying collaborative teleoperation systems where many

users share control of a single physical resource. Inputs from each user must be combined

to generate a single control stream for the robot. In the taxonomy proposed by Chong et

al. [21], these are Multiple Operator Single Robot (MOSR) systems. An Internet-based

MOSR system is described by McDonald, Cannon, and colleagues [19, 85]. In their work,

several users assist in waste cleanup using Point-and-Direct (PAD) commands. Users point

to cleanup locations in a shared image and a robot excavates each location in turn. More

recent developments on MOSR systems can be found in [44, 51].

The SFS problem is closely related to controlling a shared robotic webcam. We

introduced the frame selection problem for robotic webcams in a series of conference chap-

ters: exact solution with discrete zoom [112], approximation solution with continuous zoom

[110, 111], approximate solution with fixed zoom [58]. This journal paper presents greatly

expanded, generalized versions of those chapter, extending to image requests of any aspect

ratio and introducing new reward metric.

4.3 Problem definition

In this section we formalize the SFS problem using a reward metric based on

satellite image resolution.

4.3.1 Input and assumptions

The camera on a typical satellite orbits the Earth at a speed of more than 7km per

second. As illustrated in Figure 4.2, a reflection mirror moves under pitch and roll control,
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Figure 4.2: Satellite with accessible region, and frame definition.

which directs a rectangular region of the earth into the camera’s field of view. As illustrated

in the figure, the satellite’s orbit is partitioned into time windows. During each window,

the satellite camera can capture one rectangular image which we refer to as a frame. Since

most satellites cannot perform yaw rotation, the frame is always aligned with satellite orbit

direction.

We assume that the camera frame is a rectangle with fixed aspect ratio (4:3), ie

its width is proportional to the resolution. A triple c = [x, y, z] describes such a frame:

[x, y] ∈ Ra specifies the center point of the frame with respect to an accessible region Ra,

and z specifies the resolution of the frame. The pair x, y determines the pitch and roll

angles of the mirror. Setting z = 10 meters means a pixel in the image is equivalent to area

of 10 × 10 square meters. A higher z-value means lower image resolution. The attainable

resolution set is Z, so z ∈ Z. For example, a frame has a width that is 1000 times the
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resolution z and a length that is 1333 times the resolution z, then the area of the frame is

1000∗1333×z2. The width and the length of the frame are linear functions of the resolution,

which are defined as w(z) and l(z) respectively.

For a given time window, we consider n requested viewing zones. The ith request,

0 ≤ i ≤ n, is a rectangle ri = [xi, yi, wi, li, zi, ui], where [xi, yi] ∈ Ra specifies center point

with respect to the accessible region, wi, li are the width and the length of the requested

rectangle, zi is the desired resolution, and ui is the utility for the request, which describes

how much the client is willing to pay for the requested view zone. This is also the maximum

reward associated with this request. We assume that all requested viewing zones are iso-

oriented rectangles (not necessarily with 4:3 aspect ratio) aligned with the satellite’s orbit

direction.

Given a set of n requested viewing zones, the objective is to compute a single

frame c∗ that yields maximum total reward. The solution space is

Φ = Ra × Z = {[x, y, z]|[x, y] ∈ Ra, z ∈ Z}.

We consider two cases: 1) Z is a finite discrete set and 2) Z is a continuous set.

4.3.2 Reward Metric

Recall that ri is the ith requested viewing zone. The corresponding client has a

utility ui for this region. Define si as the reward from the ith request. Let c = [x, y, z]

be a candidate camera frame. If the ri is fully covered by c, i.e., ri ⊆ c, and the desired

resolution is obtained, i.e., zi ≥ z, then si = ui. If the resolution requirement is satisfied but

the coverage is partial, then the reward is discounted by a coverage ratio: si = ui
Area(ri∩c)
Area(ri)

. If
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Figure 4.3: Resolution discount function.

zi < z (the resolution requirement is not satisfied) then the reward should be discounted by

a resolution discount factor d(z, zi). Hence, si = ui
Area(ri∩c)
Area(ri)

d(z, zi). As illustrated in Figure

4.3(a), the resolution discount function d(z, zi) is a truncated function: 0 ≤ d(z, zi) ≤ 1. It

is an increasing function of zi/z because an image has more value as resolution increases.

The resolution discount function we propose is

d(z, zi) = min{(zi/z)b, 1}.

Let Resolution(ri) = zi and Resolution(c) = z. We call this reward metric the Coverage-

Resolution Ratio (CRR),

si(c) = ui
Area(ri ∩ c)

Area(ri)
min

((Resolution(ri)
Resolution(c)

)b
, 1

)
(4.1)

The exponential discount factor b determines how resolution affects reward. Figure

4.3(b) shows two cases: b = 1 and b = ∞. The case is b = ∞ corresponds to a scenario in

which users will not accept any image with a resolution that is lower than requested. We

use the case b = 1 as default setting for numerical examples in the rest of the chapter.

Given n requests, the total reward is the sum of individual rewards,

s(c) =
n∑

i=1

si(ri, c). (4.2)
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Our objective is to find c∗ = arg maxc s(c), the frame that maximizes total reward.

4.3.3 Properties of the CRR reward metric

The Coverage-Resolution Ratio s is non-smooth and piecewise linear in both x

and y. For convenience we use s(x, y, z) instead of s(c) with c = [x, y, z].

Nonsmoothness

Figure 4.4: The CRR reward function, si(x, y), for a given candidate frame. Assume zi > z,
l(z) ≤ li, and w(z) ≤ wi, we can move the candidate frame (gray rectangle) around the the
ri to observe how si(x, y) changes. The function is plateau-like with a maximum height of
uiArea(c ∩ ri)/Area(ri). The function consists of 5 planar and 4 quadratic surfaces at the
corners.

Recall that Area(ri) = wili, z = Resolution(c), and zi = Resolution(ri). To study

the properties of the reward function, we first treat z as a constant: Area(c∩ ri) = pi(x, y)

is a function of (x, y). The objective function defined by Equation (4.1) becomes a function
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of the center point of the candidate frame,

s(x, y) =
n∑

i=1

ωipi(x, y) (4.3)

where

ωi =
ui

wili
min((zi/z)b, 1) (4.4)

is a constant for each user. We know that pi(x, y) is the area of the intersection of the ith

requested viewing zone and the candidate frame (x, y, z). Therefore, the maximum value

of pi(x, y) is min(Area(c), Area(ri)). This property determines that the shape of user i’s

satisfaction function is plateau-like. Figure 4.4 shows the shape of si(x, y) given z < zi and

candidate frame c smaller than ri. Note that si is non-differentiable with respect to x and

y so we cannot use derivative-based approaches to solve this problem.

Piecewise linearity in x and y

Since all requested viewing zones and the candidate frame are iso-oriented rectan-

gles, the shape of any intersection between them is also a rectangle with its edges parallel to

either x axis or y axis. Thus the term pi(x, y) in Equation (4.3) is either 0 or the area of the

rectangle formed by intersection between ri and c = [x, y, z]. This yields a nice property:

the pi(x, y) is piecewise linear with respect to x if we fix y, and piecewise linear with respect

to y if we fix x. Since the total reward function s(x, y) is a linear combination of pi(x, y),

i = 1, ..., n, it has the same property. Figure 4.5 shows an example for a case with two

requested viewing zones.
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Figure 4.5: The combined reward function s(y) for two users. Ordered sets {ỹk} and {x̃k},
k = 1, ..., 8 are corresponding to horizontal and vertical edges of plateaus. Note that ỹ4 and
ỹ5 overlap in this case.

4.3.4 Comparison with “similarity metrics”

Symmetric Difference (SD) and Intersection Over Union (IOU) are standard “sim-

ilarity metrics” used in pattern recognition as a measure of how similar two shapes are

[17, 15, 118]. In our case, for a requested viewing zone ri and a candidate frame c, the SD

metric would be:

SD =
Area(ri ∪ c)−Area(ri ∩ c)

Area(ri ∪ c)
.

The intersection-over-union metric would be

IOU =
Area(ri ∩ c)
Area(ri ∪ c)

= 1− SD.
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Compared with IOU, our Coverage-Resolution Ratio (CRR) metric has similar properties:

• IOU and CRR attain their minimum value of 0 if and only if c ∩ ri = ∅,

• both attain their maximum value if and only if c = ri,

• both are proportional to the area of c ∩ ri, and

• both depend—albeit differently—on the sizes of c and ri.

The key differences between CRR and these metrics are:

• the SD and IOU metrics are not piecewise linear in x or y,

• it is hard to extend SD or IOU to arbitrarily-shaped requested viewing zones because

they will become non-normalized for such cases,

• the SD and IOU metrics do not take resolution into account.

4.4 Algorithms

In this section we present algorithms for two versions of the Satellite Frame Se-

lection problem. We start with a version in which the resolution is restricted to a set of

discrete values. Subsection 4.4.2 describes an algorithm for this version of the problem. In

Subsection 4.4.3 we allow the resolution to vary continuously. The algorithms make use of

geometric events we call “plateau vertices.”
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Figure 4.6: Illustration of relationship between “plateau vertices” and “virtual corners” with
geometric interpretation for two requested viewing zones and a candidate frame with fixed
resolution. Each candidate frame with its center located at a “plateau vertex” must have
one its corner overlapped with a “virtual corner”.

4.4.1 Plateau vertices and virtual corners

Recall that the objective function for a given resolution and one requested viewing

zone si(x, y) is plateau-like as shown in Figure 4.4. The function consists of nine facets:

one top plane, four side planes, and four quadratic surfaces at the corners. There are

two vertical boundaries and two horizontal boundaries at the bottom (bounding the entire

plateau), the same numbers of similar edges at the top (bounding the plateau’s flat top), and

eight boundaries separating side planes and corner quadratic surfaces (see Figure 4.6(a)).

For a fixed resolution z and n requested viewing zones, there are n plateaus. We

define a plateau vertex as an intersection between any two boundaries, which includes both

intersections of facet boundaries induced by a single plateau or by two distinct plateaus.

Since all plateaus are iso-oriented, one of the boundaries is horizonal and the other is

vertical. A plateau vertex can be represented by a three-dimensional vector (x̃, ỹ, z). For n
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requested viewing zones and m fixed resolutions, there are O(mn2) plateau vertices. Figure

4.6(a) show an example of plateau vertices for two requested viewing zones.

As illustrated in Figure 4.6(b), we define a virtual corner as an intersection of two

extended edges of original rectangular shaped requested viewing zones. For n requested

viewing zones, there are O(n2) virtual corners as well. Since the definition of virtual corner

does not depend on resolution, each virtual corner can be represented by a two-dimensional

vector in (x, y) plane. Figure 4.6 shows the relationship between plateau vertices and virtual

corners, which is also described by the following lemma,

Lemma 4 (Virtual Corner/Plateau Vertex Relation). A candidate frame with its

center located at a plateau vertex must have one corner overlapping a virtual corner.

Proof. Recall that a plateau vertex is an intersection of one vertical plateau edge and one

horizontal plateau edge. The plateau edge corresponds to the non-smooth part of the reward

function, which occurs when an edge of the candidate frame overlaps with an extended edge

of a requested viewing zone. If a candidate frame is centered at a plateau vertex then its

edges must overlap with two orthogonal extended edges of some requested viewing zones,

which forms a virtual corner by definition.

Although we can find a corresponding virtual corner for each plateau vertex, they

are not equivalent. There are three reasons.

• The notion of plateau vertex is only applicable to cases where the resolution of the

candidate frame is discrete and finite; the notion of virtual corner applies to cases

where the resolution is either discrete or continuous.
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• Not all virtual corners have corresponding plateau vertices. For example, the top left

virtual corner in Figure 4.6(b) has no corresponding plateau vertex. In fact, a virtual

corner that does not overlap with any REAL edge of a requested viewing zone does

not have a corresponding plateau vertex.

• For m discrete resolutions, a virtual corner has O(m) corresponding plateau vertices.

A virtual corner has at most four corresponding plateau vertices for a fixed resolution.

The position of the virtual corner is invariant to resolution by definition.

Plateau vertices and virtual corners can help us to find the optimal solution for

the optimization problem defined in Equation (4.2) for the discrete resolution case and the

continuous resolution case respectively.

Lemma 5 (Virtual Corner Optimality Condition). At least one optimal frame has

one corner overlapping with a virtual corner.

Proof. Let c∗ = [x∗, y∗, z∗] be an optimal solution. If we fix z = z∗, we get s(x, y) as a

summation of plateaus. As discussed earlier, for a fixed z and x, the objective function

s(y) is piecewise linear. So the optimum must be at a vertex y = ỹ such that s(x∗, ỹ, z∗) =

s(x∗, y∗, z∗). We also know that the line y = ỹ in the (x, y) plane is one of the horizontal

facet boundaries of the plateaus. Similarly, we can find another optimal frame [x̃, ỹ, z∗],

where line x = x̃ is one of the vertical facet boundaries of the plateaus. Therefore, the

optimal frame [x̃, ỹ, z∗] is centered at a plateau vertex (x̃, ỹ) for a fixed resolution z = z∗.

Apply Lemma 4, we know that the optimal frame [x̃, ỹ, z∗] must have one corner at one of

the virtual corners.
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Using the Virtual Corner Optimality Condition (VCOC), we can restrict frames to

share a corner with a virtual corner, thereby reduce the dimensionality of the problem. The

VCOC is true no matter whether the resolution variable is discrete or continuous. However,

it is more convenient to use plateau vertices when the resolution variable is discrete. The

VCOC can be transformed to the following Plateau Vertex Optimality Condition,

Lemma 6 (Plateau Vertex Optimality Condition). When the resolution variable is

discrete, at least one optimal frame is overlapping with a plateau vertex.

Proof. From the proof the Lemma 5, we know that we can find an equivalent optimal

solution [x̃, ỹ, z∗] from a given optima solution c∗ = [x∗, y∗, z∗]. We also know that [x̃, ỹ] are

intersection of two facet boundaries. For the discrete resolution case, z∗ has to be one of

the discrete resolutions in the solution space. Then the point [x̃, ỹ, z∗] is one of the plateau

vertices.

4.4.2 Algorithms for discrete resolutions

A satellite camera may have a discrete set of m resolution levels. We can use this

algorithm to find the best position and resolution parameters.

Brute force approach.

Based on the Lemma 6, we can solve the optimization problem by simply checking

all combinations of resolution levels and corresponding plateau vertices. We evaluate the

objective function for each of the O(n2) plateau vertices and repeat this for each of the m

resolution levels. It takes O(n) time to evaluate a candidate frame c. Therefore, the brute
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force algorithm runs in O(n3m).

Efficient traversal of plateau vertices.

For n requested viewing zones, we have 4n horizontal plateau facet boundaries

{ỹ1, ỹ2, ..., ỹ4n} and 4n vertical plateau facet boundaries {x̃1, x̃2, ..., x̃4n}. The Plateau Ver-

tex Traversal Algorithm is summarized below. It reduces the computation complexity from

O(n3m) to O(n2m).
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Plateau Vertex Traversal (PVT) Algorithm

s∗ = 0, O(1)

Sort {yi + .5wi}, i = 1, ...n O(n log n)

Sort {yi − .5wi}, i = 1, ...n O(n log n)

For each resolution level z (m in total)

(i). /* Compute vertical extended plateau edges {x̃1, x̃2, ..., x̃4n} */ O(n)

For each requested viewing zone i, i = 1, ..., n,

x̃4i−3 = xi − .5(wi + w(z)), x̃4i−2 = xi − .5(wi − w(z)),

x̃4i−1 = xi + .5(wi − w(z)), x̃4i = xi + .5(wi + w(z)),

End For

(ii). /* Compute the sorted sequence {ỹ1, ỹ2, ..., ỹ4n}*/, O(n)

For each i, i = 1, ..., n

ỹ4i−3 = yi − .5(wi + w(z)), ỹ4i−2 = yi − .5(wi − w(z)),

ỹ4i−1 = yi + .5(wi − w(z)), ỹ4i = yi + .5(wi + w(z)),

End For

Merge the 4 ordered sequences: {ỹ4i−3}, {ỹ4i−2}, {ỹ4i−1}, and {ỹ4i},

i = 1, ..., n to get the ordered sequence {ỹ1, ỹ2..., ỹ4n},

where ỹ1 is the smallest.

(iii). /*Solve 1D problems */

For x = x̃i, i = 1, ..., 4n,

s = maxy s(x̃i, y, z),

if s > s∗ then s∗ = s, x∗ = x̃i, y∗ = y, z∗ = z.

End For

End For

Output s∗ as optimal objective function value and (x∗, y∗, z∗) as optimal frame.
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In step (iii) of the PVT algorithm, we traverse the vertical facet boundaries of the

plateaus one by one. Figure 4.7 illustrates how it works using the example of two requested

viewing zones. For each vertical edge, we find the maximum. Using Lemma 5, we know

that this procedure will find an optimal solution. It remains to show how much time is

required to solve the resulting problem of finding

max
y

s(x, y, z)

for given x and z. This special optimization problem can be solved in O(n) with a sorted

sequence {ỹ1, ỹ2..., ỹ4n}. The objective function is a “summation” of n plateaus, which is

shown in Figure 4.5. For fixed x and z, this piecewise linear function only changes slope

at {ỹi}, i = 1, ..., 4n. For each vertex ỹi, we know how much the slope will change after

crossing the vertex. We can find the maximum objective value by walking over all ordered

vertices {ỹi} from the one side to the other side on the line x = x̃i . This process only takes

O(n). Therefore, step (iii) of the algorithm will take O(n2), proving the following theorem.

Theorem 6. We can solve the Satellite Frame Selection problem in time O(n2m) for n

users and m resolution levels.

4.4.3 Algorithms for continuous resolution

If a satellite camera has a variable and continuous resolution, there are infinitely

many “plateau vertices”. The virtual corner optimality condition can reduce the 3D opti-

mization problem to O(n2) 1D optimization problems with respect to variable z. We then

show that each 1D optimization problem can be dissected into O(n) piecewise polynomial
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Figure 4.7: An illustration of PVT algorithm using the example in figure 4.5. Figure (a)
shows how we sweep along x axis to dissect the 2D optimization problem into O(n) 1D
optimization problems. Figure (b) shows how we solve the 1D optimization problem by
traversal over the ordered vertices for x = x̃4.

functions, for each, we can find an optimal in time O(n). Using incremental computation

and a diagonal sweep, we show how to improve the running time to O(n3).

Basic Virtual Corner Algorithm (BVC)

Figure 4.8: An example of the 1D optimization problem with respect to z. In this example,
we assume l(z) = 4z, w(z) = 3z, b = 1, and ui = 1 for i = 1, ..., n.

For n requested viewing zones, there are O(n2) virtual corners. The virtual cor-

ner optimality condition (Lemma 5) allows us to find the optimal frame by checking the

candidate frames that have one of their corners overlapped with one of the virtual corners.

This means that we can reduce the original 3D optimization problem in Equation (4.2) to
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O(n2) 1D optimization problems. Define pi(z) = Area(ri∩ c), ai = Area(ri) = wili, the 1D

optimization problem is to find,

max
z

s(z) =
n∑

i=1

ui(pi(z)/ai)min((zi/z)b, 1) (4.5)

subject to the constraint that a corner of the candidate frame c = [x, y, z] coincides with a

virtual corner.

To study the 1D maximization problem in Equation (4.5), consider a virtual corner.

For simplicity, we assume that the virtual corner is at the origin. Moreover, we assume that

the virtual corner coincides with the lower left corner of the candidate frame. (The virtual

corner in Figure 4.8 is the intersection of the extensions of the left edge of r2 and the

bottom edge of r5.) Placements in which one of the other three corners of the candidate

frame coincides with the virtual corner are handled in a similar fashion. We may be able

to eliminate some of the placements beforehand, but it reduces the computation by only

a constant factor. Now, we gradually increase z and observe the value of s(z): Figure 4.9

shows the function for the example in Figure 4.8.

Figure 4.9: Reward function for the example in figure 4.8 as a function of image resolution.
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a. Critical z Values and Intersection Topologies. The function s(z) is a piecewise

smooth function (see Figure 4.9), so derivative-based approaches cannot be used directly.

We refer to a maximal z-interval on which s(z) is smooth as a segment. We consider four

questions that form the basis for our algorithms.

1. Can we give a geometric characterization of the endpoints of the segments?

2. How many segments are there?

3. What is the closed-form description of s(z) within a single segment, and how

complex is the computation of the maximum of s(z) on that segment?

4. How different are the closed-form descriptions of s(z) on two adjacent seg-

ments?

The first three questions lead to an O(n4) algorithm; the fourth question results

in an improvement to O(n3 log n).

We start with question 1).

Definition 1. A critical z value is the z value such that s(z) changes its closed-form

representation.

Let Zc(xv, yv) be the set of critical z values for virtual corner (xv, yv). From

Equation (4.8), we see that the non-smoothness comes from the non-smoothness of either

min((zi/z)b, 1) or pi(z). The critical z values that come from the former type form a

subset Z ′c(xv, yv), those of the latter type a subset Z ′′c (xv, yv). The former type is easy to

deal with because it occurs at z = zi, i = 1, ..., n. Therefore, Z ′c(xv, yv) = {zi|i=1,...,n},

so |Z ′c(xv, yv)| = n. Note that Z ′c(xv, yv) is the same for all virtual corners (xv, yv), so
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Z ′c(xv, yv) = Z ′c.

Obtaining Z ′′c (xv, yv) is less straightforward. Depending upon the intersection

topology, the intersection area pi(z) of a rectangle ri with an expanding candidate frame c

is one of the following 4 types: it is of type 0 if pi(z) equals zero, of type 1 if pi(z) equals a

positive constant qi0, of type 2 if pi(z) is described by a first-degree polynomial qi1z + qi0,

and of type 3 if pi(z) is described by a second-degree polynomial qi2z
2 + qi1z + qi0, where

qi0, qi1, and qi2 are coefficients. We are interested in how the type changes as z gradually

increases from 0+ to +∞.

Figure 4.10: Examples for “fundamental rectangles”. In this figure, r1 and r2 are type (a)
rectangles, r3 is a type (b) rectangle, and r4 is a type (o) rectangle.

To further simplify this problem, we consider “fundamental rectangles” from three

classes.

• Class (o): A rectangle that does not intersect Quadrant I,

• Class (a): A rectangle that is fully contained in Quadrant I and does not intersect the

extended diagonal of the candidate frame.

• Class (b): A rectangle that is fully contained in the Quadrant I and that has a diagonal

that overlaps the extended diagonal of the candidate frame.
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Figure 4.10 gives examples for these three classes of fundamental rectangles.

Figure 4.11: Change of pi(z) for the three classes of requested viewing zones when z gradually
increases from 0+ to +∞.

As shown in Figure 4.11, as z increases,

• the pi(z) for a class (o) rectangle always remains type 0,

• the pi(z) for class (a) rectangle starts from type 0, changes to type 2 when its inter-

section with the expanding candidate frame begins, then changes to type 1 when it

becomes fully contained.

• the pi(z) for a class (b) rectangle can start either from type 3 or type 0 depending on

whether the bottom left corner of the rectangle coincides with the origin or not. It

also changes to type 1 once it becomes fully contained.

The transitions correspond to critical z values.

We can ignore class (o) fundamental rectangles because they do not contribute to

our objective function. A requested viewing zone that is a fundamental rectangle from class

(a) or (b) generates at most two critical z values. Many of the requested viewing zones

though will not be fundamental rectangles. We resolve this by decomposing those requests.
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b. Requested viewing zone decomposition. A requested viewing zone that is not a

fundamental rectangle intersects at least one of following: the positive x-axis, the positive

y-axis, and the extended diagonal of the expanding candidate frame. We treat the differ-

ent intersection patterns and show that in each case the requested viewing zone can be

decomposed into at most four fundamental rectangles (see also Figure 4.12).

Figure 4.12: Examples of four requested viewing zone decomposition cases.

• If the requested viewing zone intersects only the diagonal, then it can be decomposed

into two class (a) rectangles and one class (b) rectangle.

• If the requested viewing zone intersects only one positive coordinate axis, then it can

be decomposed into a class (a) rectangle and a class (o) rectangle.

• If the requested viewing zone intersects the diagonal and exactly one positive coor-

dinate axis, then it can be decomposed into two class (a) rectangles, one class (b)

rectangle, and one class (o) rectangle.

• If the requested viewing zone intersects the diagonal and both positive coordinate



4.4. ALGORITHMS 83

axes, then it can be decomposed into one class (a) rectangle, one class (b) rectangle,

and two class (o) rectangles.

As we can see from figure 4.12, a decomposed requested viewing zone can yield at most three

fundamental rectangles that are either class (a) or class (b). Every fundamental rectangle

inherits the zi value of the original request.

In summary, we claim that the n requested viewing zones can be classified and/or

decomposed into O(n) fundamental rectangles that are either class (a) or class (b). Since

each rectangle in class (a) or (b) generates (at most) two critical z values, we find that

|Z ′′c (xv, yv)| = O(n). Combining this with the bound on the size of Z ′c(xv, yv) yields that

|Zc(xv, yv)| = O(n). Since the critical z values partition the z axis into O(n) segments, on

each of which s(z) is a smooth function, the following lemma is true.

Lemma 7. For each virtual corner, the z-axis can be partitioned into O(n) segments, on

which s(z) is smooth.

Lemma 7 answers our question 2) from the previous section.

c. Optimization Problem on a Segment. With the knowledge of question 1) and

2), we are ready to attack question 3): derive a closed-form representation of s(z) on a

segment and solve the constrained optimization problem. We have the following lemma.

(The order of the resulting polynomial depends on the resolution discount factor b),

Lemma 8. For each segment, s(z) is a polynomial function with 6 coefficients g0, g1, g2, g3, g4,

and g5,

s(z) = g0z
−b + g1z

−b+1 + g2z
−b+2 + g3 + g4z + g5z

2. (4.6)
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Proof. For a virtual corner (xv, yv), let us assume the segment is defined by [z′, z′′), where

z′, z′′ ∈ Zc(xv, yv) are two adjacent critical z values. The n requested viewing zones have

been classified and decomposed into k = O(n) class (a) or (b) rectangles. We denote those

rectangles as r̃i, i = 1, ..., k. Let us define set S′ = {i|zi ≤ z′} and set S′′ = {i|zi ≥ z′′}.

From the definition of critical z value, we know that zi /∈ (z′, z′′) for i = 1, ...n so that

S′ ∪ S′′ = {1, ..., k} and S′ ∩ S′′ = ∅. Therefore, Equation (4.5) becomes,

s(z) =
∑

i∈S′′
uipi(z)/ai +

∑

i∈S′
ui(pi(z)/ai)(zi/z)b (4.7)

We also define Sj be the set of rectangles with type j intersection areas when

z ∈ [z′, z′′), for j = 1, 2, 3 respectively. Recall that ai = wili is a constant; we have

∑

i∈S′′
uipi(z)/ai =

∑

i∈S′′∩S1

uiqi0/ai

+
∑

i∈S′′∩S2

ui(qi1z + qi0)/ai

+
∑

i∈S′′∩S3

ui(qi2z
2 + qi1z + qi0)/ai

We can perform a similar transform for the second term of Equation (4.7).

∑

i∈S′
(uipi(z)/ai)(zi/z)b

= z−b
∑

i∈S′∩S1

uiz
b
i qi0/ai

+ z−b
∑

i∈S′∩S2

uiz
b
i (qi1z + qi0)/ai

+ z−b
∑

i∈S′∩S3

uiz
b
i (qi2z

2 + qi1z + qi0)/ai

Combining them, we get Equation (4.6).

The proof of Lemma 8 shows that Equation (4.5) can be converted into Equa-

tion (4.6) in O(n) time. The maximum of Equation (4.6) can be found in constant time.
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Combining Lemma 7 and Lemma 8 yields the Basic Virtual Corner Algorithm.

Basic Virtual Corner (BVC) Algorithm

For each virtual corner (xv, yv) O(n2)

Compute members of Zc(xv, yv) O(n)

For each segment O(n)

Compute polynomial coefficients O(n)

Find maximum for the polynomial O(1)

End For

End For

Report the maximum s(c) and the corresponding c∗.

Theorem 7. The Basic Virtual Corner algorithm (BVC) solves the problem in O(n4) time.

Virtual Corner with Incremental Computing (VC-IC)

The inner loop in the BVC algorithm takes O(n2), which is the product of two

factors: O(n) segments and O(n) time to compute polynomial coefficients. One observation

is that we do not need to re-compute the coefficients entirely if we solve the O(n) sub-

problems in an ordered manner. Comparing the polynomial coefficients of two adjacent

segments, we find that the difference is caused by the critical z that separates the two

segments. The critical z value belongs to some rectangle. Therefore, we only need to do a

coefficient update on one polynomial to get another one. This update only takes constant

time. To exploit this coherence we must sort the elements of Zc(xv, yv) in the inner loop to

be able to consider the segments in order; this takes O(n log n) time. We replace the inner

loop in BVC by the following subroutine.
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Virtual Corner with Incremental Computing (VC-IC)

Sort members of Zc(xv, yv) O(n log n)

Compute first polynomial coefficients O(n)

For each subsequent segment O(n)

Update polynomial coefficients O(1)

Find maximum for the polynomial O(1)

End For

The VC-IC algorithm improves the running time:

Theorem 8. The Virtual Corner with Incremental Computing (VC-IC) algorithm solves

the problem in O(n3 log n).

Virtual Corner with Incremental Computing and Diagonal Sweeping (VC-IC-

DS)

In the outer loop of the VC-IC algorithm, sorting of Zc(xv, yv) for each virtual

corner is the dominating factor. The question is: is it necessary to sort critical z values

repeatedly for each virtual corner? Recall Zc(xv, yv) is the union of a set Z ′c and a set

Z ′′c (xv, yv).

Each critical z value in Z ′′c (xv, yv) uniquely defines the position of the upper right

corner of the candidate frame on its extended diagonal, which is called critical point in the

figure 4.13(a). Each critical point corresponds to the point that the candidate frame start

intersecting some requested viewing zone or the point that the intersection between the can-

didate frame and some requested viewing zone ends. This gives a geometric interpretation

for those critical z values. Figure 4.13(a) shows a case with two requested viewing zones
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and five critical z values.

Let Z ′′e (xv, yv) be the set of the corresponding z values of the intersections be-

tween the extended diagonal and the extended edges, which is illustrated in Figure 4.13(b).

Ze
′′(xv, yv) also depends on virtual corner (xv, yv). As shown in Figure 4.13(a) and Figure

4.13(b),

Zc
′′(xv, yv) ⊆ Ze

′′(xv, yv).

If we have a sorted sequence Ze
′′(xv, yv), we can get a sorted sequence Zc

′′(xv, yv) by checking

whether a point in Ze
′′(xv, yv) belongs to Zc

′′(xv, yv). This takes O(n) time because there

are O(n) points in Ze
′′(xv, yv).

Figure 4.13(c) illustrates a nice property of the sorted sequence of points in

Ze
′′(xv, yv). In the figure, we have an ordered sequence of intersected points at the ex-

tended diagonal that starts from the origin O. we number the point closest to the origin

as point 1 and the second closest as point 2. As we gradually move the extended diagonal

downward and observe what happens to the sorted sequence, we find that the order of the

sorted sequence does not change until the diagonal line hits an intersection between two

extended edges, which is a virtual corner by definition. Let us define this virtual corner be

the adjacent virtual corner to the virtual corner at the origin. Point 1 and point 2 switch

their order at the adjacent virtual corner (i.e. the gray rectangle in the figure 4.13(c)). This

phenomenon shows that if we have a sorted sequence of the intersection points at a virtual

corner, we can get the sorted sequence at an “adjacent virtual corner” in constant time.

This result can reduce the sorting cost from O(n log n) to O(n) if we handle the

virtual corners in a diagonal order: imagine there is a sweep line that has same slope as
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Figure 4.13: (a) Zc
′′(xv, yv) for a two requested viewing zone case, (b) Ze

′′(xv, yv) are set of
intersection points between the extended diagonal of the candidate frame and the extended
edges, (c) The two intersection points switch order only at a virtual corner formulated by
the intersection of the two extended edges that generate the two intersection points, and (d)
Sorting virtual corners in this order can reduce the sorting cost in the algorithm.

the extended diagonal and an intercept at +∞, we decrease the intercept and stop at each

virtual corner. As shown in figure 4.13(d), we solve the sub problem for the virtual corner

when the sweeping line stops. This yields the following VC-IC-DS algorithm.
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VC-IC with Diagonal Sweeping (VC-IC-DS) Algorithm

Sort Z ′c O(n log n)

Sort virtual corners in sweeping order O(n2 log n)

Sort Z ′′e (xv, yv) for the first virtual corner O(n log n)

For each virtual corner (xv, yv) O(n2)

Update ordered set Z ′′e (xv, yv) O(1)

Get members of Z ′′c (xv, yv) O(n)

Merge Z ′c and Z ′′c (xv, yv) O(n)

Run the sub routine in section 4.4.3. O(n)

End For

Report the maximum s(c) and the corresponding c∗.

Theorem 9. The Virtual Corner with Incremental Computing and Diagonal Sweeping

(VC-IC-DS) approach solves the problem in O(n3) time.

4.5 Results

We have implemented all algorithms. The discrete resolution algorithms were

implemented on a PC with 950Mhz AMD Athlon CPU and 1GB RAM. The machine runs

under Redhat Linux 7.1 and the algorithms are programmed in Java. The algorithms for

variable and continuous resolutions were implemented using Microsoft Visual C++ on a

PC laptop with 1.6Ghz Pentium-M and 512MB RAM.

Figure 4.14 shows the results for four different sets of inputs. As we can see from

Figure 4.14(a) and (b), the optimal frame does not necessarily have one corner overlapping
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Figure 4.14: Examples of computed optimal frames (shown in grey). We set b = 1 and
ui = 1 for all requests and use PVT Algorithm from section 4.4.2. We have 10 different
resolution levels and set l(z) = 4z and w(z) = 3z.

with a corner of a requested viewing zone. However, one corner of the optimal frame does

overlap with one of the virtual corners. Figure 4.14(b) has three requested viewing zones

exactly the same as those in (a) and one more big requested viewing zone. It is interesting

to see how the optimal frame changes after the big requested viewing zone joined in the

system. Figure 4.14(c) shows that if all input rectangles fall far way from each other, the

algorithm functions as a chooser selects one input rectangle with the highest utility value as

the output. Figure 4.14(d) shows that a large requested viewing zone does not necessarily

yield a large optimal frame. It worth mentioning that results depend on utility ui, which

functions as weight on each requested viewing zone. Those samples only illustrate cases

that utility are same across or requested viewing zones.

Figure 4.15 shows a speed comparison for the two algorithms presented in Sub-
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Figure 4.15: Speed comparison for the two algorithms from Subsection 4.4.2. Curve B refers
to the brute-force algorithm; curve V refers to the PVT algorithm. Each data point is based
on average of 10 runs with random inputs.

section 4.4.2 for a fixed resolution level (m = 1). It confirms what the theoretical analysis

predicts; the plateau vertex traversal algorithm clearly outperforms the brute-force ap-

proach. We use random inputs for testing. The random inputs are generated in two steps.

First, we generate four random points, which are uniformly distributed in Ra. The four

points represent locations of interests, which are referred as seeds. For each seed, we use

a random number to generate a radius of interest. Then we generate requested viewing

zones. To generate a requested viewing zone, we create six random numbers. One of them

is used to determine which seed the request will be associated with. Two of them will be

used to generate the location of the center point of the request, which is located within the

corresponding radius of the associated seed. The remaining three random numbers are used

to generate width, length, and resolution for the request. In the test, we set utility to be 1

across all inputs. Each data point in Figure 4.15 is the average of ten runs.

Figure 4.16 shows the relationship between the optimal frame size and the choice

of b value in the Coverage-Resolution Ratio. This demonstrates the tradeoff: large b leads
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Figure 4.16: Relationship between the optimal frame size and the choice of the b value in
Coverage-Resolution Ratio metric in Subsection 4.3.2. Algorithm chosen and its settings
are the same as the samples in figure 4.14.

to large ouput frames. As b → 0+, the optimal frame becomes the smallest frame that

contains all request viewing zones: Area(c ∩ ri) = Area(ri) ∀i.

Figure 4.17 illustrates the speed difference between BVC, VC-IC, and VC-IC-DS

algorithms. Each data point in Figure 4.17 is an average of 10 trials with different random

inputs, where the same random inputs are used to test all three algorithms. The timing

results are consistent with the theoretical analysis.

4.6 Conclusions and Future Work

To automate satellite camera control, this chapter introduces the Satellite Frame

Selection problem: find the satellite camera frame parameters that maximize reward during

each time window. We formalize the SFS problem based on a new reward metric that

incorporates both image resolution and coverage. For a set of n client requests and a
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Figure 4.17: Computation speed comparison for random inputs.

satellite with m discrete resolution levels, we give an SFS algorithm that computes optimal

frame parameters in O(n2m). For satellites with continuously variable resolution (m = ∞),

we give an SFS algorithm that computes optimal frame parameters in O(n3). We have

implemented all algorithms and compare computation speeds on randomized input sets.

In future work, we will consider algorithms that automatically solve the SFS prob-

lem approximately, and versions of the SFS problem where the satellite has a third axis

to permit yaw motion. In this case the optimal frame is not necessarily aligned with the

requested viewing zones. We are also interested in more general cases where the requested

viewing zones are non-rectangular, for example convex or concave polygons. We will also

consider extensions to cases where the solution includes more than one frame: allowing p

sequential views produces a path planning problem; allowing p different cameras produces

a variant of the p-center problem.

In last three chapters, we have studied the Collaborative Teleoperation system,

where the shared device is a Pan-Tilt-Zoom robotic camera. In Chapter 5, we introduce a



4.6. CONCLUSIONS AND FUTURE WORK 94

different Collaborative Teleoperation system, where the shared resource is a human “Tele-

Actor”.
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Chapter 5

The Tele-Actor System:

Collaborative Teleoperation Using

Networked Spatial Dynamic Voting

5.1 Introduction

Consider the following scenario: an instructor wants to take a class of students

to visit a research lab, semiconductor plant, or archaeological site. Due to safety, security,

and liability concerns, it isn’t possible to arrange a class visit. Showing a pre-recorded

video does not provide the excitement nor group dynamics of the live experience. In this

chapter we describe a system that allows groups to collectively visit remote sites using client-

server networks. Such “collaborative teleoperation” systems may be used for applications

in education, journalism, and entertainment.
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Remote-controlled machines and teleoperated robots have a long history [108].

Networks such as the Internet provide low-cost and widely-available interfaces that makes

such resources accessible to the public. In almost all existing teleoperation systems, a single

human remotely controls a single machine. We consider systems where a group of humans

shares control of a single machine. In a taxonomy proposed by Tanie et al. [21], these

are Multiple Operator Single Robot (MOSR) systems, in contrast to conventional Single

Operator Single Robot (SOSR) systems.

In MOSR systems, inputs from many participants are combined to generate a

single control stream. There can be benefits to collaboration: teamwork is a key element

in education at all levels [103, 23, 22] and the group may be more reliable than a single

(possibly malicious) participant [44].

As an alternative to a mobile robot, which can present problems in terms of mobil-

ity, dexterity, and power consumption, we propose the “Tele-Actor”, a skilled human with

cameras and microphones connected to a wireless digital network, who moves through the

remote environment based on live feedback from online users.

We have implemented several versions of the system. Figure 5.1 shows a view of

the “Spatial Dynamic Voting” (SDV) interface implemented for Internet browsers. Users

are represented by “votels”: square colored markers that are positioned by each user with a

mouse click. This chapter presents system architecture, interface, and collaboration metrics

.
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Figure 5.1: The Spatial Dynamic Voting (SDV) interface as viewed by each user. In the
remote environment, the Tele-Actor takes images with a digital camera which are trans-
mitted over the network and displayed to all participants with a relevant question. With
a mouseclick, each user places a color-coded marker (a “votel” or voting element) on the
image. Users view the position of all votels and can change their votel positions based on
the group’s response. Votel positions are then processed to identify a “consensus region” in
the voting image that is sent back to the Tele-Actor. In this manner, the group collaborates
to guide the actions of the Tele-Actor.

5.2 Related Work

Tanie, Matsuhira, Chong, et al. [21] proposed a useful taxonomy for teleoperation

systems: Single Operator Single Robot (SOSR), Single Operator Multiple Robot (SOMR),

and Multiple Operator Multiple Robot (MOMR).

Most networked robots are SOSR, where control is limited to one human operator

at a time. Tanie et al. analyzed an MOMR system where each operator controls one robot

arm and the robot arms have overlapping workspaces. They show that predictive displays

and scaled rate control are effective in reducing pick-and-place task completion times that
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require cooperation from multiple arms [21].

In an MOMR project by Elhajj, Fukuda, Liu, Xi, and colleagues [30, 31], two

remote human operators collaborate to achieve a shared goal such as maintaining a given

force on an object held at one end by a mobile robot and by a multi-jointed robot at

the other. The operators, distant from the robots and from each other, each control a

different robot via force-feedback devices connected to the Internet. The authors show both

theoretically and experimentally that event-based control allows the system to maintain

stable synchronization between operators despite variable time-lag on the Internet.

MOMR models are also relevant to online collaborative games such as Quake and

The Sims Online, where players remotely control individual avatars in a shared virtual

environment.

In SOMR systems, one human operator controls multiple robots. A variant is No

Operator Multiple Robot (NOMR) systems, sometimes called Collaborative or Cooperative

Robotics, where groups of autonomous robots interact to solve an objective [3]. Recent

results are reported in [28, 102, 99, 18].

A number of SOSR systems have been designed to facilitate remote interaction.

Paulos and Canny’s Personal Roving Presence (ProP) telerobots, built on blimp or wheeled

platforms, were designed to facilitate remote social interaction with a single remote operator

[95, 96]. Hamel [56] studied how networked robots can be useful in hazardous environments.

Fong, Thorpe and colleagues study SOSR systems where collaboration occurs between a

single operator and a mobile robot that is treated as a peer to the human and modeled

as a noisy information source [36]. Related examples of SOSR “cobots” are analyzed in
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[2, 78, 109, 11, 83, 82].

One precedent for an online MOSR system is described in McDonald, Cannon and

colleagues [85]. For waste cleanup, several users to assist remotely using Point-and-Direct

(PAD) commands [19]. Users point to cleanup locations in a shared image and a robot

excavates each location in turn. In this Internet-based MOSR system, collaboration is serial

but pipelined, with overlapping plan and execution phases. The authors demonstrate that

such collaboration improves overall execution time but do not address conflict resolution

between users.

Figure 5.2: System architecture. Participants on the Internet view and voting on a se-
ries of voting images. The human “Tele-Actor,” with head-mounted wireless audio/video
link, moves through the remote environment in response. The “Local Director” facilitates
interaction by posting textual queries.

Pirjanian studies how reliable robot behavior can be produced from an ensemble of

independent processors [98]. Drawing on research in fault-tolerant software [74], Pirjanian

considers systems with a number of homogenous processors sharing a common objective.
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He considers a variety of voting schemes and shows that fault-tolerant behavior fusion can

be optimized using plurality voting [13] but does not consider spatial voting models such

as ours.

In [45], we present an Internet-based MOSR system that averaged multiple vector

inputs to control the position of an industrial robot arm. We report experiments with

maze-following that suggested that groups of humans may perform better than individuals

in the presence of noise due to central limit effects.

In [44], we used finite automata to model collaborating users in a MOSR system

such as Cinematrix, a commercial system [20] that allows large audiences to interact in

a theater using plastic paddles. To model such systems, we averaged an ensemble of FA

outputs to compute a single stream of incremental steps to control the motion of a point

robot moving in the plane. We analyzed system performance with a uniform ensemble of

well-behaved deterministic sources and then modeled malfunctioning sources that go silent

or generate inverted control signals. We found that performance is surprisingly robust even

when a sizeable fraction of sources malfunction.

Outside of robotics, the notion of MOSR is related to a very broad range of group

activities including social psychology, voting, economics, market pricing, traffic flows, etc.

ACM organizes annual conferences on Computer Supported Collaborative Learning (CSCL)

and Computer Supported Cooperative Work (CSCW). Surveys of research in this broader

context can be found in [87, 68, 101, 39, 6, 34, 48].

We note that the concept of human-mounted cameras with network connections is

not novel: there is extensive literature on “wearable computer” systems [79, 80]. The focus
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of our research is on collaborative control. A preliminary report on the Tele-Actor system

appeared in [50].

5.3 System Architecture

Figure 5.3: The human Tele-Actor transmits images from the remote environment using the
helmet-mounted video camera and responds to user votes. Helmet design by E. Paulos, C.
Myers, and M. Fogarty.

The Tele-Actor system architecture is illustrated in Figure 5.2. As the Tele-Actor

moves through the environment, camera images are sent to the Tele-Actor server for dis-

tribution to users, who respond from their Internet browsers. User voting responses are

collected at the Tele-Actor server, which updates java applets for all users and for the

Tele-Actor in the field. The Tele-Actor carries a laptop which communicates to the Inter-

net using the 2.4 GHz 802.11b wireless protocol. A camera-person with a second camera

provides third person perspectives as needed. Using this architecture, the users, the Tele-
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Actor Server, the Local Director, the camera-person, and the Tele-Actor communicate via

the Internet.

5.4 SDV User Interface

We have developed a new graphical interface to facilitates interaction and collab-

oration among remote users. Figure 5.1 illustrates the “Spatial Dynamic Voting” (SDV)

interface that is displayed on the browser of all active voters. Users register online to partic-

ipate by selecting a votel color and submitting their email address to the Tele-Actor server,

which stores this information in our database and sends back a password via email. The

server also maintains a tutorial and an FAQ section to familiarize new users with how the

systems works.

Using the SDV interface, voters participate in a series of 30-60 second voting

images. Each voting image is a single image with a textual question. In the example from

Figure 5.1, the Tele-Actor is visiting a biology lab. Voters click on their screens to position

their votels. Using the HTTP protocol, these positions are sent back to the Tele-Actor

server and appear in an updated voting image sent to all voters every 3-5 seconds. In

this way voters can change their votes. When the voting cycle is completed, SDV analysis

algorithms analyze the voting pattern to determine a consensus command that is sent to

the Tele-Actor. The SDV interface differs from multiple-choice polling because it allows

spatially and temporally continuous inputs.

To facilitate user training and asynchronous testing, the Tele-Actor system has

two modes. In the offline mode, voting images are drawn from a prestored library. In the
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online mode, voting images are captured live by the Tele-Actor. Both offline and online

modes have potential for collaborative education, testing, and training. In this chapter we

focus on the online mode.

Figure 5.4: Navigation Query. Participants indicate where they want the Tele-Actor to go.

Figures 5.4, 5.5, 5.6, and 5.7 illustrate four types of SDV queries and their associ-

ated branching structures. In each case, the position of the majority of votels decides the

outcome.

We tried including a live video broadcasting stream but found that due to band-

width limitations, the resolution and frame rate is unacceptable for low-latency applications.

Standard video broadcasting software requires about 20 seconds of buffered video data for

compression, which introduces unacceptable delays for live visits. We are hoping this can

be reduced in the future with faster networks such as Internet2.
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Figure 5.5: Point Query. Participants point out a region of interest in the voting image.

5.5 Hardware and Software

5.5.1 Version 3.0 (July 18, 2001)

The Tele-Actor webserver is an AMD K7 950Mhz PC with 1.2GB memory con-

nected to a 100Mbs T3 line. The Local Base Station is a Dell Pentium III 600Mhz laptop

with 64MB memory connected to a 10Mbs T1 line at the remote site. It has a USB video

card, which captures video at 320× 240 resolution.

We used the Swann MicroCam wireless video camera, model ALM-2452 1. It is

18x34x20 mm and weighs 20 grams, with a 9 volt battery as its power supply. It has a

2.4 GHz analog RF output at 10 mW and transmits line-of-sight up to 300 feet with a

resolution of 380 horizontal lines.
1http://www.swann.com.au
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Figure 5.6: Opinion Query. Votel position can be anywhere between extreme values to
indicate degree of opinion.

Custom software includes:

1. the client side SDV browser interface based on DHTML, (Screen shot is shown in

Figure 5.9).

2. the Local Basestation image selection interface, (Screen shot is shown in figure 5.8),

and

3. the Tele-Actor server.

During online mode, the Local Basestation, running Microsoft Windows 98, uses a custom

C++ application to capture images with textual questions and transmit them to the Tele-

Actor server for distribution.

During both online and offline modes, the Tele-Actor server uses custom C and

C++ applications to maintain the database and communicate with the local base station
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Figure 5.7: Multiple-choice Query. A variation on the Point Query with a small number of
explicit options.

and with all active voters. The Tele-Actor server runs Redhat Linux 7.1 and the Apache

web server 1.3.20. The Resin 2.0.1 Apache plug-in and Sun JDK 1.3.1 with Mysql database

3.23.36 provide java server pages to handle the user registration and data logging 2. Cus-

tom software built on the graphic development toolkit GD 2.0.1 generates election images

overlaid with current votel positions.

5.5.2 Version 9.0 (July 25, 2002)

A lot improvements had been done during the year after the lauch of the Tele-Actor

syste. Some changes are

1. Scenario design: We found that it is necessary to have some scripts for action to meet

the requirement of education. We usually have a few prepared small scenarios before
2http://www.caucho.com
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Figure 5.8: Local Director Software. Local director selects a voting image and propose a
voting question.

the live event. Voting result will drive the event from one scenario to the other, which

follows a treelike structure. Scenarios should be educational and interesting.

2. New java-based interface: We have encountered a number of compatibility problems

when we use DHTML as the main programming tool to build SDV interface. DHTML

also has very limited functionality. We decided to switch to java based interface since

version 4.0. The java-based interface allows us to animate the votel movement and

employ more flexible voting intervals. A screen shot of new interface is shown in figure
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Figure 5.9: DHTML-based SDV interface in version 3.0

5.10.

3. Improved voting image quality: We found that the image quality provided by ana-

log wireless camera is not satisfying if illumination condition is not good, which is a

common problem for most indoor environments. We used Sony camcorder with night

vision functionality to solve the problem. As shown in figure 5.2, we also used a ded-

icated cameraman to shoot the video. Sony camcorder has local video display, which

lets cameraman know the image quality immediately. Image capturing task has been

shifted to cameraman instead of local director. A shutter-like device has been added

to the system to allow cameraman to capture the precious moment. Cameraman also
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Figure 5.10: Java-based SDV interface in Version 9.0

has a small LCD display mounted on his elbow to show the current voting information

to facilitate view planning.

4. Facilitate voting question formulation: Local director only focuses on posting voting

questions. A new java applet supported by C-based CGI script has been developed to

replace the software shown in figure 5.8. Some candidate questions are pre-stored in

database to reduce the time delay caused by voting question formulation. The screen

shot of the local director applet is shown in figure 5.11.

5. Video/Audio broadcasting: Starting from Version 8.0, we provide remote users with
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Figure 5.11: Java applet for local director

streaming video/audion feedback. As shown in the figure 5.2, a new video server has

been added to the system. Figure 5.10 also shows that a small video window has been

added to top-right corner of the screen. We have compared several kinds of video

streaming technologies and selected Microsoft Media Encoder as our broadcasting

software.

6. New wireless technology: In Version 3.0, we used analog 2.4 GHz wireless camera to

transmit image from event field to local base station. We soon learned that analog 2.4

GHz based camera is vulnerable to interference and has very limited image quality.

Also, the distance between local base station and event field is limited by the range
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of the analog signal. We then switched to 802.11b protocol based wireless ethernet,

which is usually hooked up to Internet. We digitize the image locally and send it to

local base station using TCP/IP. Based on the new approach, the local base station

can be located at anywhere on the Internet. Also the camera selection becomes more

flexible because we decoupled the camera and wireless communication.

7. New hardware design: The primary Tele-Actor is carrying a 600 Mhz SONY picture

book laptop with 128MB memory connected to a 11Mbs 802.11b wiress LAN at the

remote site. It has a USB video card, which captures video at 320× 240 resolution.

The cameraperson has a PIII 750Mhz SONY VAIO latop with 256Mb memory with

similar USB video capture device. The laptops direct their video displays to hand-

mounted TVs to provide updates on voting patterns. Figure 5.2 show that the primary

Figure 5.12: Hardware configuration for the camera-person. The hardware configuration of
the Tele-Actor is similar but has a helmet-mounted camera.

Tele-Actor has a Canon camera mounted on her helmet. Figure 5.12 shows that the
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camera-person has a Sony camcorder with night vision capability, which provides very

high quality image and video stream. Both of them are equipped with a shutter-like

device to allow them to capture the precious moment in the live event.

5.6 Problem Definition and Algorithms

Users express responses by clicking on the voting image to spatially indicate a

preferred object or direction in the field of view. As an alternative to semantic analysis of the

voting image, we consider votels as spatial distributions and identify preferred “consensus”

regions in the image. We then use these regions to define two metrics for individual and

group performance in terms of leadership and collaboration.

5.6.1 Problem Definition

Voter Interest Functions

Figure 5.13: Evolution of voting image as votels arrive.

Consider the kth voting image. The server receives a response from user i in the

form of an (x, y) mouseclick on image k at time t. We define the corresponding votel:
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vik(t) = [xik(t), yik(t)].

Consensus Regions

Votels are usually clustered around some regions in a voting image. We refer to

these regions as consensus regions:

Sk = {C1k, C2k, ..., Cmk}.

Since there are n voters, m ≤ n.

Given Vk = {vik(T )}, i = 1, ..., n, we can compute the consensus regions Sk.

One approach is to use existing methods: cluster analysis[16, 65, 116] and convex

hull generation. After votels are classified into groups, we can compute the convex hull of

each group with 3 or more votels and treat each convex polygon as a consensus region. In

the rest of the section, we analyze voting patterns in terms of goals and collaboration based

on known consensus regions {C1k, C2k, ..., Cmk}.

5.6.2 Ensemble Consensus Region

Given Sk, Vk, the ensemble consensus region is a region with the most votels. Let

Ik(i, j) =





1 if [xik(T ), yik(T )] ∈ Cjk

0 otherwise

The count

nkj =
n∑

i=1

Ik(i, j)

is the number of votels inside consensus region j of voting image k. Breaking ties arbitrarily,

let C∗
k , the ensemble consensus region, be any Cjk with max nkj .
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Figure 5.14: Voting image of an industrial robot arm with 27 votels.

Cjk Interval Width #Votes Dkj

1 [52, 94] 42 8 2.26
2 [139, 180] 51 5 1.16
3 [236, 288] 52 14 3.19
Overall – 145 27 2.21

Table 5.1: SDV analysis of Voting Image from Figure 5.14. Intervals and widths are in
pixels.

A consensus region can be projected onto a line in the voting image plane to

obtain a consensus interval. Table 5.6.2 summarizes votel analysis for the votels shown in

Figure 5.14, where consensus regions are projected onto the x axis to obtain three consensus

intervals. Consensus interval 3, with the most votels, is the ensemble consensus interval.
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5.6.3 Collaboration Metric

To what degree are voters collaborating? We define a measure of collaboration

based on the density of votels in each consensus region. For consensus region j in voting

image k, define the votel density ratio as:

Dkj =
dkj

dk
=

nkj

akj

Nk
A

=
nkj

Nk
(

A

akj
)

where dkj is the votel density (votes per unit area) for consensus region j, dk is the overall

average votel density for the voting image k, nkj is number of votels in consensus region j,

akj is the area or width of the consensus region j, Nk is the total number of votes and A is

the area of the voting image. This metric is proportional to the ratio nkj/Nk and inversely

proportional to the area of the consensus region. The metric is high when many votes are

concentrated in a small consensus region and low when votes are uniformly spread among

multiple consensus regions. We can also compute an overall collaboration level for voting

image k:

Dk =
∑

nkj∑
akj

A

Nk
= A/

∑
akj

which can measure of how focused the votels are.

Table 2 gives results for another voting image. The collaboration measure for each

consensus region is given in the last column of Tables 1 and 2. In table 5.6.3, the data

suggests that users are collaborating in a focused manner to vote for consensus interval 2

even though it has fewer votes than consensus interval 3.
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Cjk Interval Width #Votes Dkj

1 [44, 84] 40 10 2.35
2 [141, 168] 27 6 3.32
3 [223, 283] 60 16 2.51
Overall – 127 32 2.37

Table 5.2: SDV Analysis for another voting image.

5.7 Online Field Tests

We performed a half-hour field test on 8 Nov 2001, with 25 7th-grade students from

Dolores Huerta Middle School, and used the Tele-Actor to visit the UC Berkeley Microlab

to learn how microchips are made. The Microlab is located at fourth floor of Cory Hall, UC

Berkeley. Microchip fabrication needs a clean room environment and there are hazardous

materials being used in fabrication process as well. It is usually difficult to arrange a field

trip for students to such environment. Our Tele-Actor, who is well-trained and aware of

safety and security issues, is directed by the 7th Grader students to explore the lab.

A second field test was conducted on July 25th, 2002, with 26 9th grade-students

visiting a Biotechnology lab at the Lawrence Berkeley National Laboratory. This was part

of the Robot-Clone-Human high-school curriculum project involving UC Berkeley’s Alpha

Lab, the Interactive University Project, and San Francisco Unified School District. This

project is developing a teaching module geared for high school biology students to learn

about what biotechnology is, how robots work, and how robots are used in biotech.

The third field test was conducted on Oct 23th, 2002 with 23 students from a

UC Berkeley Mechanical Engineering graduate course, who used the Tele-Actor interface

to visit the UC Berkeley Microlab to learn details about the wafer manufacturing process.
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5.8 Conclusions

This chapter describes a networked teleoperation system that allows groups of

participants to collaboratively explore remote environments. We propose two innovations:

the SDV, a networked interface for collecting spatial inputs from many simulataneous users,

and the “Tele-Actor,” a skilled human with cameras and microphones who navigates and

performs actions in the remote environment based on this input. We presented system

architecture, interface, experiments, and metric that accesses the collaboration level.

Collaborative teleoperation systems will benefit from advances in broadband In-

ternet, local wireless digital standards (802.11x), video teleconferencing standards, and

Gigahertz processing capabilities at both client and server. We are working on efficient

algorithms for consensus identification and “scoring” to motivate user interaction. We will

perform a series of field tests with different user groups and different remote environments.

In related research, we are developing collaborative teleoperation systems where

the shared resource is a machine such as a robotic pan-tilt-zoom camera. Our goal is systems

that are viable for very large groups (1000 person and up), allowing collective exploration

over networks such as Internet2 and interactive television.

To experiment with the latest version of our system, please visit: www.tele-

actor.net.
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Chapter 6

Algorithms for The Tele-Actor:

Unsupervised Scoring for Scalable

Internet-Based Collaborative

Teleoperation

6.1 Introduction

In Tele-Actor field tests with students ranging from middle and high-school we

discovered that students would often become passive, simply watching the video without

participating. Instructors asked for a mechanism to quantify student engagment for grading

purposes. We realized we could address both issues by introducing a scoring metric that

would continually assess students and provide a competitive element to the interactions.
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Figure 6.1: Above, (a) illustrates a sample view from our scalable user interface, where
spatial inputs from users are represented with colored square markers, in this case indicating
points of interest in a live video image. The unsupervised scoring metric assigns a scalar
value to each input. Below, (b) illustrates the aggregate (consensus) density distribution
that is used to automatically compute scores based on vote arrival time.

This chapter describes an unsupervised scoring metric and algorithms for rapidly

computing it. The metric is ”unsupervised” in the sense that it does not rely on a human

expert to continuously evaluate performance. Instead, performance is based on ”leadership”:

how quickly users anticipate the decision of the majority.

As illustrated in Figure 6.1, the unsupervised scoring metric is based on clustering

of user inputs. For n users, computing scores runs in O(n) time. This chapter presents

problem formulation, distributed algorithms, and experiment results.
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6.2 Related Work

Networked robots, controllable over networks such as the Internet, are an active

research area. In addition to the challenges associated with time delay, supervisory control,

and stability, online robots must be designed to be operated by non-specialists through

intuitive user interfaces and to be accessible 24 hours a day. There are now dozens of

Internet robots online, a book from MIT Press [49], and an IEEE Technical Committee on

Internet and Online Robots. See [63, 104, 66, 70, 88, 57, 93, 77, 83, 82] examples of recent

projects.

Tanie, Matsuhira, Chong, et al. [21] proposed a useful taxonomy for teleoperation

systems: Single Operator Single Robot (SOSR), Single Operator Multiple Robot (SOMR),

and Multiple Operator Multiple Robot (MOMR).

Most networked robots are SOSR, where control is limited to one human operator

at a time. Tanie et al. analyzed an MOMR system where each operator controls one robot

arm and the robot arms have overlapping workspaces. They show that predictive displays

and scaled rate control are effective in reducing pick-and-place task completion times that

require cooperation from multiple arms [21].

In an MOMR project by Elhajj, Fukuda, Liu, Xi, and colleagues [30, 31], two

remote human operators collaborate to achieve a shared goal such as maintaining a given

force on an object held at one end by a mobile robot and by a multi-jointed robot at the

other. MOMR models are also relevant to online collaborative games such as Quake and

The Sims Online, where players remotely control individual avatars in a shared virtual

environment.
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One precedent for an online MOSR system is described in McDonald, Cannon and

colleagues [85]. For waste cleanup, several users to assist remotely using Point-and-Direct

(PAD) commands [19]. Users point to cleanup locations in a shared image and a robot

excavates each location in turn. In this Internet-based MOSR system, collaboration is serial

but pipelined, with overlapping plan and execution phases. The authors demonstrate that

such collaboration improves overall execution time but do not address conflict resolution

between users.

In [45, 44], Goldberg, Chen, et al present an Internet-based MOSR system that

averaged multiple vector inputs to control the position of an industrial robot arm. In

[110, 111], we present another MOSR system that allow a group of users to simultaneously

share control of a single robotic camera. We formulate MOSR problem as resource allocation

problem and develop algorithms for camera control.

Outside of robotics, the notion of MOSR is related to a very broad range of group

activities including compute gaming, education, social psychology, voting, etc. Although

there currently are no standard ”best practices” for the design of scoring systems in the

computer games industry, some tentative efforts recently have been made to identify the

key features of an effective scoring and ranking model. GamaSutra, the flagship professional

resource for digital game designers from around the world, has proposed four characteris-

tics of a successful scoring system. It should be reproducible (consistent), comprehensive

(incorporating all significant aspects of game play), sufficiently detailed (so that players

understand how it is calculated), and well-balanced (allowing for players to stay compet-

itive even when playing from a disadvantage) [72]. Kriemeier suggests that a failure to
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address each of these four principles will negatively affect user participation and motiva-

tion. Proposed customizations to further increase player motivation in a system with these

four standard features include introducing non-zero sum (cooperative) scoring elements and

a score decay algorithm that will penalize players for a lower rate of participation in the

game. The Tele-Actor unsupervised scoring model aims to incorporate these features, and

to investigate their value and effectiveness from a user-perspective.

Two different areas in educational psychology investigate the usefulness of games

in learning. The first addresses the element of ”fun” in games as a powerful motivational

tool [43, 60]. In particular, cooperative play models are thought to provide particularly

powerful evidence of games as tools of engagement; as Sutton-Smith notes [113], children

and young adults are so motivated to be accepted in such play, they make sacrifices of

egocentricity for membership in the group, a claim that may be tested by the unsupervised

scoring model.

Csikszentmihalyi’s theory of ”flow” [24], a confidence-building state in which a

participant becomes absorbed in and highly effective at a particular activity, argues for the

importance of feedback as the primary criterion for achieving flow. According to Csikszent-

mihalyi, flow creates a sense of motivation that is intrinsic to the activity, rather than relying

on extrinsic rewards (prizes, grades, acclaim), and intrinsic motivation is ultimately more

important for long-term success in any activity. For example: Gee [40] argues that students

today are used to experiencing flow and achieving a sense of mastery in their at-home game

play, but not in school. Many educators are considering adopting more game-like scenarios

for learning as a way to incorporate students’ proclivity for structured play.
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Figure 6.2: The Spatial Dynamic Voting (SDV) interface as viewed in the browser by each
online voter. Low framerate live video (approx 1 fps) is displayed in the left window. Users
vote on spatial preferences using their mouse to position a small marker (votel) in the middle
(voting) window, over either a prestored or live image. Users view the position of all votels
and can change their votel positions based on group dynamics. As described below, votel
positions are processed to assign scores to each user. The list of active voters, ranked by
score is displayed in the right window. The lower right window displays a plot of voter score,
overall average, and scores for the top three voters.

Group decision-making is sometimes modelled as an n-person (multi-player) co-

operative game [120, 4]. We can view the unsupervised scoring system as a nonzero-sum

multi-player game. in which users compete and cooperate to increase their individual leader-

ship scores. The open-endedness of the n-person, non-zero sum scenario makes its outcome

the most theoretically challenging to predict in game theory. The data collected on user

behavior in the form of leadership scores may be useful in evaluating a variety of predic-

tive models for n-person games and the associated likelihood and structures of cooperative

behavior in real-life [5, 84, 107].
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A related question is, how do players learn game strategies and adapt their game

play behavior accordingly over time? The study of adaptive learning models in games

attempts to develop a theory of ”game cognition” that explains why people do not always

discover or follow optimal strategies in game play [81]. Erev and Roth [33], for instance,

argue for the importance of the presence or absence of reinforcement and feedback within

a repetitive game structure as the most important factor in predicting player action. By

providing feedback in the form of a leadership score and simultaneously tracking changes

in scores over time, we can quantify how well scores correlate with group performance.

6.3 Problem Definition

Figure 6.3: An example of voter interest functions, the corresponding majority interest
function, and an illustration of consensus region generation for the voting image in Figure
6.2.

Figure 6.2 illustrates the user interface.

In this section, we propose an unsupervised scoring metric based spatial distribu-

tions of votes.
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6.3.1 Inputs and assumptions

Consider the kth voting image. The server receives a response from user i in the

form of an (x, y) mouseclick on image k at time t. We define the corresponding votel:

vik(t) = [xik(t), yik(t)].

Each votel represents a user’s response (”vote”) to the voting image. We model

such responses with a voter interest function, a density function based on the bivariate

normal distribution:

fik(x, y) ∼ N(vik(t), Σik(t))

where vik(t) is the mean vector and Σik(t) is a 2× 2 variance matrix, such that,

∫∫

σ
fik(x, y) dx dy = 1

where σ is the area of the voting image. Since σ is a bounded 2D region, the voter interest

function is a truncated bivariate normal density function with mean at vik(t) as illustrated

in Figure 6.3(a).

Majority Interest Function

When voting on image k ends at stopping time T , the last votel received from each

of n active voters determines Vk, a set of n votels. We define the ensemble interest function

for voting image k as the normalized sum of these voter interest functions.

fk(x, y) =
1
n

n∑

i=1

fik(x, y).
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Consensus Regions

As illustrated in figure 6.3(c), we can extract spatial regions by cutting the ensem-

ble interest function using a horizontal plane at a height proportional to the overall volume.

Let zk be the cutting threshold. The zk value satisfies the condition that the ratio between

the partial volume of the ensemble interest function above the horizontal plane and the

total volume of the ensemble interest function is constant r. We use a value of 0.10 (10%

of the volume lies above the plane). The cutting plane defines an iso-density contour in

the ensemble interest function that defines a set of one or more closed subsets of the voting

image,

Sk = {(x, y)|fk(x, y) ≥ zk}.

As illustrated in Figure 6.3(c), we refer to these subsets as consensus regions:

Sk = {C1k, C2k, ..., Clk}.

Since there are n voters, l ≤ n is number of consensus regions.

Majority Consensus Region

Given Sk, Vk, the majority consensus region is the region with the most votels

(breaking ties arbitrarily). Let

Ik(i, j) =





1 if [xik(T ), yik(T )] ∈ Cjk

0 otherwise

The count

nkj =
n∑

i=1

Ik(i, j)
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is the number of votels inside consensus region j of voting image k. Breaking ties arbitrarily,

let C∗
k , the majority consensus region, be any Cjk with max nkj .

6.3.2 Unsupervised Scoring Metric

We measure individual performance in terms of “leadership”. By definition, a

“leader” anticipates the choices of the group. In our context, a leader is an individual who

votes early in a position consistent with the majority consensus region. Define Is is an

outcome index for voter i and voting image s:

Is,i =





1 if [xi,s(Ts), yi,s(Ts)] ∈ C∗
s

0 otherwise

Define ts,i as the duration of the time that voter i’s votel stays in the majority interest

region for the sth voting image, Ts is the total voting time for voting image s. Therefore

term Ts−ts,i

Ts
Is,i characterizes how well the voter anticipated the majority consensus region

for the voting image s.

To smooth out rapid changes in user scores, we pass the term to the following low

pass filter to get a stabilized “Leadership score”:

Lk+1,i = (1− α)Lk,i + α
Tk − tk,i

Tk
Ik,i

where the initial value L0,i = 0 for each voter i. The value of filter factor α is set to 0.1 in

our experiments to allow smooth fluctuation in user scores.

Note that this scoring metric depends only on the spatio-temporal pattern of votes

and does not require a human expert.
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6.4 Distributed Algorithm

To compute the unsupervised score for each user, we start by maintaining the

ensemble interest function with a grid. We partition the voting image into 160 × 160

regular cells. For each voter interest function fik(x, y), we discretize it into a 2D array with

respect to the same lattice resolution. Depending on the variance of the Gaussian function

and accuracy threshold, each element of the 2D array only contains constant number of

non-zero entries. Therefore, to compute the ensemble interest function for n votes, we add

those n 2D arrays into the cells. This operation takes O(n). Figure 3(b) shows the shape

of the ensemble interest function for the voter interest function in 3(a).

As illustrated in figure 3(c), we can extract spatial regions by cutting the ensemble

interest function using a horizontal cutting plane. The next step is to compute the height

of the cutting plane zk for the given volume ratio r. Define r(z), z > 0 be the volume

ratio between the partial volume of the majority interest function above the cutting plane

with height z and the total volume of the ensemble interest function. As z increases, the

horizontal plane rises. Hence r(z) is a monotonic decreasing function of z. A binary search

can find zk in O(log(1/ε)) steps with error ε. Since we need to compute the partial volume

for each step, which takes at most O(m) for m cells in the grid. Therefore, the complexity

for computing the threshold is O(log(1/ε)m). If we consider ε as a constant, then it is

O(m).

The second step is to perform the threshold for the ensemble function and find

connected components, each of which forms a consensus region. The connected components

algorithm makes two passes through the 2D array processing a row of cells at a time, from
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left to right. During the first pass, each cell is assigned the minimum label of its neighbors

or if none exists, a new label is assigned. If neighboring cells have different labels, those

labels are considered equivalent and entered into an equivalence table. The second pass uses

the equivalence table to assign the minimum equivalent label to each non-zero entry. Since,

this step also takes O(m) time, the total computation time for computing the consensus

regions for a given ensemble interest function is O(m).

To determine the majority consensus region, we need to count the number of votels

inside each consensus region. For this purpose, each cell maintains a votel count that is

updated during votel insertions. In a single pass, we can sum the number of votels in the

cells belonging to each consensus region. Thus, this step takes O(m) time.

If we add computation time of algorithms for ensemble interest function, consensus

regions, majority consensus regions, and leadership score together, the total computation

time is O(n + m).

Figure 6.4: Processing time for computing the unsupervised scoring metric as a function of
the number of voters based on trials using random voter positions.

The algorithm has been implemented and runs on the client side using Java. We
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tested the algorithm using a 750Mhz PC Laptop with 256Mb RAM. Figure 6.4 illustrates

the linear scalability of the algorithm in terms of number of voters. The Tele-Actor server is

primarily responsible for distributing voting data to all users. Each client sends the user’s

voting data and receives updated voting data from the Tele-Actor server every 1.0 seconds.

For every server update, at most n new voter interest functions will need to be inserted.

Using the updated interest functions, the consensus regions and the majority consensus

region are recomputed. When a voting cycle ends, each voter computes only the voter’s

new leadership score, thus distributing the scoring calculations among the clients.

6.5 The “Tele-Twister” Application

To understand how the unsupervised scoring metric works with groups of partic-

ipants and to test software reliability, we developed a collaborative teleoperation system

based on a popular party game. The result is a sequence of multi-player non-zero sum

games embedded inside a sequence of two-player zero sum games.

Twister was the first board game where human bodies are the board pieces. In

this classic game, human players interact over a large horizontal playing board. Players

sequentially place their hands and feet on colored circular targets chosen randomly (eg,

Left foot: GREEN). The challenge for players is to maintain placement of hands and feet

in increasingly difficult combinations without falling over.

In our version, Tele-Twister, there are two human players called “twisters”. One

twister is dressed in red, the other in blue, as illustrated in figure 6.5. Remote participants

(”voters”), download the Java applet and are assigned to one of two teams, red or blue. In
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Figure 6.5: Tele-Twister: a collaborative teleoperation system where online voters direct the
movements of human players.

Tele-Twister, random target selection is replaced by the teams, who view game status using

the low framerate video and vote using the interface to collectively decide on the targets

and compete to win: having their opponent fall over first.

A typical voting pattern is illustrated in Figure 6.5(a). Votel positions for all

online voters are updated every second and displayed at each voter’s browser. Consensus

regions are computed and updated continuously by each browser. voters are free to change

their votel position at any time during the voting cycle, but when it ends, the majority

cluster determines the next move for the human twisters.

Tele-Twister is thus strategic: the red team chooses targets that are easy for

the red twister and difficult for the blue twister, and vice versa for the blue team. Tele-

Twister encourages active collaboration within teams and competition between teams. In

this context, the unsupervised scoring metric rewards active participation and collaboration
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(voters who don’t vote or are outside the majority region at the end of a voting cycle receive

a zero score).

Figure 6.5(b) shows the board layout, with 16 circles: red, blue, yellow, and green.

Since August 12th, 2003 we have conducted public ”field tests” on Fridays, from 12-1pm

Pacific Time. These field tests attract 10-25 online participants, who vote in alternating

30 second voting periods until one twister falls, ending the round. Typically, each round

continues for 10-20 voting periods, so we conduct 4-5 rounds during each field test. Figure

6.5(c) and (d) are two snapshots from a typical round.

Figure 6.6: Plot of unsupervised scoring metric from the Sept 26 2003 field test with two
teams of 21 online voters, for five rounds of the Tele-Twister game. The figure plots average
score for members of each team during sequential voting cycles. Vertical bars indicate the
end of a round and which team wins. A solid vertical line indicates that the blue team won
that round and a dashed vertical line indicates that the red team won.

Figure 6.6 shows scoring data from the field test on Friday September 26th, 2003.

All players begin the field test with a score of zero, so average score per team climbs during

the initial voting cycles: the blue team wins the first round after approx 23 voting cycles.
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How do user scores correlate with task performance (winning the round)? Note

that in the four subsequent rounds, the team with the highest average score consistently

wins the round: the red team wins rounds 2,3 and 5 and the blue team wins round 4.

During round 4, members of the red team had difficulty agreeing on the appropriate next

move, reducing the score of many red voters and in turn the average red team score. The

lack of consensus (ie. ”split votes”) resulted in a loss during that round.

A team has higher average scores when the team collaborates, reaching consensus

faster. This does not always correlate with success: it can lead to short-term snap decisions

that may appear strong but are strategically weak.

Figure 6.7: From the same Sept 26 2003 field test, plot of unsupervised scoring metric for
seven individual voters from the Blue team.

Figure 6.7 plots individual voter scores from the same field test. Note that the

score of voter 13 is consistently higher. In this case voter 13 is a member of our lab who

has played the game during many previous rounds and has developed skill at picking the
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next moves. Other players follow his moves, resulting in a high score.

6.6 Future Work

This chapter paper describes an unsupervised scoring metric for collaborative tele-

operation that encourages active participation and collaboration, and a distributed algo-

rithm for automatically computing it. To understand how the scoring metric works with

groups of participants and to test software reliability, we developed a collaborative teleop-

eration system based on a sequence of multi-player non-zero sum games embedded inside a

sequence of two-player zero sum games. Initial results suggest that the metric encourages

active participation and correlates reasonably with task performance.
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Chapter 7

Conclusions and Future Work

7.1 Contributions

7.1.1 Challenges Identified in CT Systems

Collaborative teleoperation (CT) systems allow many users to simultaneously

share control of a single remote physical resource such as a mobile camera or a human

explorer over Internet. In CT, the challenges are how to design effective systems and how

to compute consensus commands for the shared device. Using a robotic camera and a

human explorer as the shared devices, I have studied both systems and algorithms for CT.

7.1.2 Formulation of CT Problems and Metrics

To compute consensus commands, I formulate the problem as an optimization

problem: maximize total user satisfaction levels/reward by choosing the optimal control

command. The satisfaction level/reward is defined as a metric function of users’ inputs and
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the current control command.

User inputs for the Co-Opticon project are isooriented and congruent planar rect-

angles. Output, which is used to control the shared device, is a rectangle ensuring that

total satisfaction levels are maximized. User inputs for the Tele-Actor project are planar

points. Output of the Tele-Actor project is a closed region describing the most interesting

region in the voting image.

These two problems for CT systems can be seen as instances of a class of problems

described by: given n requests from a parameterized family of objects and an objective

function, choose an optimal set of k representatives from a (possibly different) family of

objects, where k < n. The objective function depends on definition of satisfaction/reward

metric function.

For the Co-Opticon system and its extension in the satellite frame selection, the

metric function depends on how the camera frame resembles the user requests with respect

to location, shape, and resolution. The traditional similarity metrics such as Intersection

Over Union (IOU) and Symmetric Difference (SD) in pattern recognition literature only

measure location difference and shape difference but can not measure resolution difference.

We propose Coverage-Resolution (CR) metric, which captures the location difference, the

shape difference, and the resolution difference. The CR metrics are a not a single metric but

a parameterized family of metrics. In addition to that, the CR metrics possess a piecewise

linearity property, which actually speeds up the algorithms in comparison to the SD or IOU

metric. In case that the shape is coupling with the resolution, i.e. a large frame means

lower resolution, the CR metric can be reduced to a simple special format: Intersection
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No. System Type Zoom Solution Complexity
1 Co-Opticon Centralized m levels Exact O(mn2)

2 Co-Opticon Distributed m levels Exact
Server: O(mn)
Client: O(n)

3 Satellite Centralized Continuous Exact O(n3)
4 Co-Opticon Centralized Continuous Approximation O((n + 1/ε3) log2 n)

5 Co-Opticon Distributed Continuous Approximation
Sever: O(n)
Client O(1/ε3)

6 Tele-Actor Distributed - Approximation
Server: O(n)
Client O(n)

Table 7.1: Algorithms developed for CT problems. Recall that n is number of requests.

Over Maximum (IOM) metric.

7.1.3 Algorithms

I apply knowledge of computational geometry and optimization theory to address

the two instances of the CT problems: the Frame Selection problem in the Co-Opticon

system and the decision/scoring problem in the Tele-Actor system.

As illustrated in table 7.1.3, for the Frame Selection Problem in Co-Option system,

since the speed is a critical issue, I developed both exact and approximation algorithms, the

best of which runs in O((n + 1/ε3) log2 n) for n requests and approximation bound ε. For

the Satellite Frame Selection problem, I developed an exact algorithm that runs in O(n3).

For the decision/scoring problem in the Tele-Actor system, I developed Gaussian-based

clustering approach and develop linear time approximation algorithms.
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7.1.4 System Development and Experiments

I have implemented both systems and they have been extensively field tested

with students and online users. We use cutting edge technologies such as high resolu-

tion networked cameras, broadband videoconferencing, and wireless networking to enhance

collaborative teleoperation and its applications in education, security, entertainment, and

journalism.

System Development

I have used C/C++, java, PERL, javascript, SQL to code the Tele-Actor system

and the Co-Opticon system. The total amount of coding is more than 200K lines. About

60% of the code is written in C/C++, 30% of the code is written in Java. The system

development involves all main stream OSs including Mac, Linux, and Windows. The scope

of the coding covers knowledge of Video Streaming, Operating System, Network Commu-

nications, Computer Architecture, and Software Engineering. The compiler used includes

GNU C++, Microsoft Visual C++, J2SE, and Active Perl. I have also spent a lot time on

improving system scalability, reliability, and security when optimizing my development.

Experiments

The Co-Opticon systems was pre-launched inside the Alpha Lab, UC Berkeley in

fall of 2002. After 6 months of testing, it was deployed at Evans Hall in Berkeley campus

in summer of 2003. The system has been running 24 hours a day and 7 days a week since

then. The system has never crashed.
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The Tele-Actor system was launched in summer of 2001. Since then, the Tele-Actor

visited many places including schools, semi-conductor manufacturing fabrication facilities,

biology laboratories, the grand opening of a new building in Berkeley campus, San Francisco

Exploratorium, Pasadena Art Center, and the Fifth Annual Webby Awards event. The

primary users of the system are online users and students. The students who experienced

with the system range from 7th grade high school students to graduate students from

Berkeley. We learned important lessons from those experiments, such as network traffic

jamming, network security problems, interference of wireless communication, administrative

problems, and coordination of teammates from different backgrounds.

Internet Videostreaming for Teleoperation

In both CT systems that we have developed, we need to deliver the representation

of the remote environment in video format to online users. We have tested mainstream soft-

ware packages including Quick time, RealVideo Codec, Microsoft Media Encoder, Cuseeme,

and Microsoft Netmeeting. One important experience we have learned from the experi-

ments is that the state of art videostreaming technology can not satisfy the requirements

from vision-based teleoperation systems.

In teleoperation, real time video is used as feedback information, which imposes

different Quality of Service requirements in comparison to videostreaming for media con-

tents. To deliver video over the Internet, we need to consider video compression standards

and network transmission protocols. There is a tradeoff between framerate and resolution

for a given bandwidth. There is also a tradeoff between compression ratio and computation
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Standards Buffering Time Framerate
MJPEG Negligible Low
MPEG2 Noticeable Moderate
MPEG4 Long (8∼10secs) Highest
H.263+ <300 msecs High

Table 7.2: A comparison of existing videostreaming standards for a given resolution of
320× 240.

time for a given CPU. The computation time includes both CPU time and data-buffering

time. Video compression is a very computationaly intensive task. A long computation pe-

riod will introduce latency and significantly impair the tele-operation performance. We can

use hardware to cut down the CPU time but not the data-buffering time. There are many

standards and protocols available but are just variations of MJPEG, MPEG2, MPEG4, and

H.26x family. We compare those standards in the following Table 7.1.4.

From teleoperation point of view, the buffering time determines the latency and the

framerate determines the responsiveness of the system. An ideal videostream should have

both high framerate and low buffering time. But if both can not be achieved at the same

time, low latency is preferred. From Table 7.1.4, H.263+ outperforms other competitors.

However, since H.263+ has to use random ports on UDP to transmit video signals, which

is blocked by most of today’s firewalls, it affects the scope of deployment.

Another interesting observation is that all of those standards try to rebuild a true

and complete representation of the field of view. However, it might not be necessary for a

teleoperation task. Sometimes, a high level abstraction is sufficient. For example, when a

mobile robot is avoiding an moving obstacle, all the robot needs to know is the speed and

bounding box of the moving object instead of knowledge that whether this object is human
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or other robots. We might want to control the level of details in video perception and

transmission. This actually imposes a interesting problem: we need a new videostreaming

standard that serves for teleoperation.

7.2 Future Work

7.2.1 Big Picture

The research on Collaborative Teleoperation is still at its infancy. The Collabora-

tive Teleoperation can be viewed as an application of collaborative decision making process

for a tele-robot over the Internet. As discussed in previous chapters, we have tested voting

and optimization as the collaborative decision making strategies using two kinds of shared

devices. However, there are other group decision strategies available, i.e. auction-based

schemes, that may worth trying. Game theory based approach can also be applied here.

Some collaboration methods can be viewed as cooperative game while others can be viewed

as non-cooperative game. There also may be a hybrid of both as we discussed in Chapter

6.

Further research on how to select an optimal collaborative teleoperation strategy

and how to classify a family of robotic device that share the same collaboration strategy

is necessary. The research can not be done without extensive experimenting with different

robotic devices and different group-making strategies.
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7.2.2 Extensions of Frame Selection Problems

4-D 1-Frame Problem

Figure 7.1: The Optimal Frame is not necessarily an iso-oriented rectangle.

In the Chapter 3 and Chapter 4, we assume that the camera frames are iso-oriented

rectangles. However, this may not be adequate if the camera can rotate along its optical

center axis. For example, it becomes more and more common for modern imaging satellites

to perform such rotations. As illustrated in figure 7.1, this introduce a 4th degree of freedom

in the camera control in addition to the pan, tilt, and zoom motions. This problem has

not be addressed in the thesis. It is unclear how to get the exact optimal solution at this

moment. Our initial study show that we may be able to give a bounded approximation

solution by modifying our algorithms in Chapter 3.

3D 1-Frame Problem with Dwelling Time

One frequently asked problem is that some requested frames may never get satisfied

if the request is located in a non-popular region. We touch briefly on the problem in Chapter
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2 by using memory-based approaches. However, a better approach is to modify our metric

to plan the camera frame with respect to frame shape, location, and the dwelling time.

K−frame/k−camera Problem

Another natural extension of the problem is what if we can take more frames.

These frames can be either taken from the same camera from the same view point or

simultaneously taken from multiple cameras. We name the former as k−frame problem and

the later as k−camera problem. These problems is analogy to the P−center problem in

facility location problem. The initial conjecture is that k−frame problem is NP-complete.

We need to work on effective approximation algorithms and bounds. The difficulty of the

k−camera problem also depends on if the cameras are homogenous or not and if the camera

views overlap or not. If the k cameras have no overlap in viewable region, this problem

can be reduced to k single frame selection problems. To attack k−frame and k−camera

problems, we may also need to generalize our metrics.

1-Telescope Frame Selection Problem

Telescope is also an application that we are interested in applying our Collaborative

Teleoperation ideas. First of all, high resolution telescopes are very valuable and scarce

devices and need to be shared by multiple researchers. In the astronomy settings, the

requests of telescope come in format of point coordinates. The output is the k frames of

the telescope. Since there is no zoom adjustment in telescope, this looks like a simplified

version of the k-frame problem. An intuitive solution is just to select k disjoint frames to

cover as much point requests as possible.
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However, we are not just to maximize the number of requests that covered by

k frames. There are several facts complicate the problem. First of all, since the Earth

is rotating, the time window that we can cover a point request depends on its location.

Secondly, we may be able to cover a point request at different time. But the quality of the

image depends on when we take the image. It depends on how far the light from the star

travels inside the Earth atmosphere. The quality of the image is the best when the telescope

points to straight upright direction. How to make sure we get high quality images for high

priority requests is interesting, too. The third reason is that we need to consider telescope

travelling time and its dome travelling time in planning. The last reason is that due to the

changing weather condition, we need to keep in mind that an global optimal solution may

not be the optimal under the uncertainty.

k-Telescope Frame Selection Problem

Similar to the k−camera problem, we may also have more than one telescope

around the world. Coordinating these telescopes is also an interesting problem. Depending

on goal of the coordination, different frame selection strategies should be used. For example,

if the goal is to avoid repetitive observations, then we should partition the space with respect

to telescope location and observation conditions. If the goal is to perform a global unstopped

tracking on certain event happening in outer space, we may need to behavior completely

different when we coordinate telescopes. These telescopes come from different locations

with different parameters, which may also complicate the problem.
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7.2.3 Another Viewpoint on Future Work

A CT system includes both human side and machine side. In human side, we need

to design systems that motivate people to collaborate to improve group decision quality.

Incentive compatibility between individual participants and the group performance is an

important issue in system design. In machine side, we need to develop innovative strategies

that make good use of the machine to improve reward, productivity, and usage. In our

Tele-Actor system, we tried to address the human side problem. In our Co-Opticon system,

we tried to address the machine side problem. We are also interested in how to combine

both human side and machine side in consideration in new CT system: How to design an

incentive compatible system for human operators and also optimize the robot utilization at

the same time? We are developping a new system, which is built on the Co-Opticon system,

will try to apply those strategies.

7.3 Conclusions

There are very exciting rich set of problems in the Collaborative Teleoperation

field. From a school bus to the robot on the Mars, we share robotic resource quite often in

our world. In robotics research, we spend a lot time on making the robotic device function

properly but do not pay enough attention on how to efficiently share control of the device.

In our practices on CT system, we feel that there is a clear call on efficiency and human

incentive compatibility, which may not be unique to us and means more attention is needed

for those issues in future robotics research.
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